Transient heat transfer measurements using thermochromic liquid crystal. Part 2: Experimental uncertainties

2003 ◽  
Vol 24 (1) ◽  
pp. 23-28 ◽  
Author(s):  
J.Michael Owen ◽  
Paul J Newton ◽  
Gary D Lock
2003 ◽  
Vol 24 (1) ◽  
pp. 14-22 ◽  
Author(s):  
Paul J Newton ◽  
Youyou Yan ◽  
Nia E Stevens ◽  
Simon T Evatt ◽  
Gary D Lock ◽  
...  

2004 ◽  
Vol 126 (2) ◽  
pp. 247-258 ◽  
Author(s):  
John P. C. W. Ling ◽  
Peter T. Ireland ◽  
Lynne Turner

New techniques for processing transient liquid crystal heat transfer experiment have been developed. The methods are able to measure detailed local heat transfer coefficient and adiabatic wall temperature in a three temperature system from a single transient test using the full intensity history recorded. Transient liquid crystal processing methods invariably assume that lateral conduction is negligible and so the heat conduction process can be considered one-dimensional into the substrate. However, in regions with high temperature variation such as immediately downstream of a film-cooling hole, it is found that lateral conduction can become significant. For this reason, a procedure which allows for conduction in three dimensions was developed by the authors. The paper is the first report of a means of correcting data from the transient heat transfer liquid crystal experiments for the effects of significant lateral conduction. The technique was applied to a film cooling system as an example and a detailed uncertainty analysis performed.


1999 ◽  
Vol 122 (3) ◽  
pp. 546-552 ◽  
Author(s):  
Dragos N. Licu ◽  
Matthew J. Findlay ◽  
Ian S. Gartshore ◽  
Martha Salcudean

A technique using a thermochromic liquid crystal coating to measure film cooling effectiveness (η) and heat transfer coefficient hf has been developed so that both of these important parameters can be obtained, as a function of time, from a single transient test. The technique combines a real-time, true color (24 bit) imaging system with the use of a wide-band liquid crystal coating and multiple event sampling for the simultaneous determination of η and hf from the single test. To illustrate and validate this technique, the flow from compound-angle square jets in a crossflow is examined. The tests, in which the jet air was suddenly heated to about 40°C, lasted 30 seconds. The measured η is compared with measurements made in the same flow under steady-state conditions in a totally different way, using a mass/heat analogy and a flame ionization detector. Good agreement is obtained. Three different blowing ratios M of 0.5, 1.0, and 1.5 are investigated with a constant jet Reynolds number of about 5000. Detailed quantitative comparisons of the η measured in both ways are made for all blowing ratios, and plots of η and hf are presented. [S0889-504X(00)01403-3]


1995 ◽  
Vol 117 (1) ◽  
pp. 184-189 ◽  
Author(s):  
Z. Wang ◽  
P. T. Ireland ◽  
T. V. Jones

A new method of processing the liquid crystal color change data obtained from transient heat transfer experiments is presented. The approach uses the full-intensity history recorded during an experiment to obtain an accurate measurement of the surface heat transfer coefficient at selected pixels. Results are presented for a model of a turbine blade cooling passage with combined ribs and film cooling holes. The implementation of the technique and the advantages to be gained from its application are discussed.


Sign in / Sign up

Export Citation Format

Share Document