square jets
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 5)

H-INDEX

10
(FIVE YEARS 1)

Author(s):  
Myeonghwan Ahn ◽  
Aatresh Karnam ◽  
Ephraim Gutmark ◽  
Mihai Mihaescu

Energies ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1505
Author(s):  
Hao Yuan ◽  
Ruichang Hu ◽  
Xiaoming Xu ◽  
Liang Chen ◽  
Yongqin Peng ◽  
...  

Vertical jet in flowing water is a common phenomenon in daily life. To study the flow and turbulent characteristics of different jet orifice shapes and under different velocity ratios, the realizable k-ε turbulent model was adopted to analyze the three-dimensional (3D) flow, turbulence, and vortex characteristics using circular, square, and rectangular jet orifices and velocity ratios of 2, 5, 10, and 15. The following conclusions were drawn: The flow trajectory of the vertical jet in the channel exhibits remarkable 3D characteristics, and the jet orifice and velocity ratio have a significant influence on the flow characteristics of the channel. The heights at which the spiral deflection and maximum turbulent kinetic energy (TKE) occur for the circular jet are the smallest, while those for square jets are the largest. As the shape of the jet orifice changes from a circle to a square and then to a rectangle, the shape formed by the plane of the kidney vortices and the region above it gradually changes from a circle to a pentagon. With the increase in the velocity ratio, the 3D characteristics, maximum TKE, and kidney vortex coverage of the flow all gradually increase.


2019 ◽  
Vol 35 (6) ◽  
pp. 911-924 ◽  
Author(s):  
Yue Jiang ◽  
Hong Li ◽  
Chao Chen ◽  
Lin Hua ◽  
Daming Zhang

HighlightsThe hydraulic performance of the impact sprinkler with circular and non-circular nozzles were measured.A High-Speed Photography (HSP) technique was employed to extract the jet breakup process of the impact sprinkler.Two index equations of jet characteristic lengths and equivalent diameters of non-circular nozzles were fitted. Abstract. An experiment was carried out to investigate the hydraulic performance of an impact sprinkler by using circular and non-circular nozzles. A High-Speed Photography (HSP) technique was employed to extract the breakup process and flow behavior of low-intermediate pressure water jets issued from the different types of orifices. These orifices were selected by the principle of equal flowrate with the same pressure. Moreover, two characteristic lengths: the jet breakup length and the initial amplitude of surface wave were measured. It was found that the sprinkler with circular nozzles produced the largest radius of throw followed by square nozzles and regular triangular nozzles when the cone angle of nozzle and pressure were unchanged, while the sprinkler with regular triangular nozzle had the best variation trend of water distribution and combination uniformity coefficient. Regular triangular jets exhibited a higher degree in breakup and the shortest breakup length compared with the square jets and the circular jets. The initial amplitudes of surface waves of regular triangular jets were larger than the square jets and the circular jets with the same cone angle. Two index equations of jet characteristic lengths and equivalent diameters of both circular and non-circular orifices were fitted with a relative error of less than 10%, which means the fitting formulas were accurate. Keywords: Breakup length, Fitting formula, Hydraulic performance, Initial amplitude, Non-circular jets.


Author(s):  
Xiaopeng Li ◽  
Fakun Zhuang ◽  
Rui Zhou ◽  
Yian Wang ◽  
Libo Wang ◽  
...  

Three-dimensional large eddy simulations of high-pressure jets at the same nozzle pressure ratio of 5.60 but issuing from different nozzles are conducted. Four different nozzle geometries, i.e., the circular, elliptic, square, and rectangular nozzles, are used to investigate the effect of the nozzle geometry on the near-field jet flow behavior. A high-resolution, hexahedral, and block-structured grid containing about 31.8 million computational cells is applied. The compressible flow solver, astroFoam, which is developed based on the OpenFOAM C++ library, is used to perform the simulations. The time-averaged near-field shock structures and the mean axial density are compared with the experiment data to validate the fidelity of the LES results, and the reasonable agreement is observed. The results indicate that the remarkable differences exist in the near-field flow structures of the jets. In particular, the circular and square jets correspond to a three-dimensional helical instability mode, while the elliptic and rectangular jets have a two-dimensional lateral instability in their minor axis planes. A subsonic flow zone exists after the Mach disk in the circular and square jets, but is lacking in the elliptic and rectangular jets. The intercepting shocks in the circular jet originate near the nozzle exit, and appear to be circular in cross-section. The intercepting shocks in the square jet originate at the four corners of the nozzle exit at first, and then are observed along the major axis plane some distance downstream of the nozzle exit. However, the formation of the intercepting shock is observed in the major axis planes but is lacking in the minor axis planes for the elliptic and rectangular jets. In addition, the real mass flow rates and discharge coefficients for different jets are computed based on the LES modeling, and their differences are explored.


2017 ◽  
Vol 53 (7) ◽  
pp. 2363-2375 ◽  
Author(s):  
Pullarao Muvvala ◽  
C. Balaji ◽  
S. P. Venkateshan

Sign in / Sign up

Export Citation Format

Share Document