Prediction of in vivo drug metabolism in the human liver from in vitro metabolism data

1997 ◽  
Vol 73 (2) ◽  
pp. 147-171 ◽  
Author(s):  
Takafumi Iwatsubo ◽  
Noriko Hirota ◽  
Tsuyoshi Ooie ◽  
Hiroshi Suzuki ◽  
Noriaki Shimada ◽  
...  
Gut ◽  
2020 ◽  
pp. gutjnl-2019-319960 ◽  
Author(s):  
Huayu Yang ◽  
Lejia Sun ◽  
Yuan Pang ◽  
Dandan Hu ◽  
Haifeng Xu ◽  
...  

ObjectiveShortage of organ donors, a critical challenge for treatment of end-stage organ failure, has motivated the development of alternative strategies to generate organs in vitro. Here, we aim to describe the hepatorganoids, which is a liver tissue model generated by three-dimensional (3D) bioprinting of HepaRG cells and investigate its liver functions in vitro and in vivo.Design3D bioprinted hepatorganoids (3DP-HOs) were constructed using HepaRG cells and bioink, according to specific 3D printing procedures. Liver functions of 3DP-HOs were detected after 7 days of differentiation in vitro, which were later transplanted into Fah-deficient mice. The in vivo liver functions of 3DP-HOs were evaluated by survival time and liver damage of mice, human liver function markers and human-specific debrisoquine metabolite production.Results3DP-HOs broadly acquired liver functions, such as ALBUMIN secretion, drug metabolism and glycogen storage after 7 days of differentiation. After transplantation into abdominal cavity of Fah-/-Rag2-/- mouse model of liver injury, 3DP-HOs further matured and displayed increased synthesis of liver-specific proteins. Particularly, the mice acquired human-specific drug metabolism activities. Functional vascular systems were also formed in transplanted 3DP-HOs, further enhancing the material transport and liver functions of 3DP-HOs. Most importantly, transplantation of 3DP-HOs significantly improved the survival of mice.ConclusionsOur results demonstrated a comprehensive proof of principle, which indicated that 3DP-HO model of liver tissues possessed in vivo hepatic functions and alleviated liver failure after transplantation, suggesting that 3D bioprinting could be used to generate human liver tissues as the alternative transplantation donors for treatment of liver diseases.


2002 ◽  
Vol 30 (10) ◽  
pp. 1129-1136 ◽  
Author(s):  
I. A. M. de Graaf ◽  
C. E. van Meijeren ◽  
F. Pektaş ◽  
H. J. Koster

2020 ◽  
Vol 35 (1) ◽  
pp. S71-S72
Author(s):  
Hwa-Kyung Lee ◽  
Jeong-Han Kim ◽  
Tae Yeon Kong ◽  
Won-Gu Choi ◽  
Ju-Hyun Kim ◽  
...  

2007 ◽  
Vol 28 (1) ◽  
pp. 118-124 ◽  
Author(s):  
Xiao-ping Zhao ◽  
Jiao Zhong ◽  
Xiao-quan Liu ◽  
Guang-ji Wang

2012 ◽  
Vol 65 (1-2) ◽  
pp. 45-49
Author(s):  
Bozana Nikolic ◽  
Miroslav Savic

Introduction. Since drug interactions may result in serious adverse effects or failure of therapy, it is of huge importance that health professionals base their decisions about drug prescription, dispensing and administration on reliable research evidence, taking into account the hierarchy of data sources for evaluation. Clinical Significance of Potential Interactions - Information Sources. The sources of data regarding drug interactions are numerous, beginning with various drug reference books. However, they are far from uniformity in the way of choosing and presenting putative clinically relevant interactions. Clinical Significance of Potential Interactions - Interpretation of Information. The difficulties in interpretation of drug interactions are illustrated through the analysis of a published example involving assessment made by two different groups of health professionals. Systematic Evaluation of Drug-Drug Interaction. The potential for interactions is mainly investigated before marketing a drug. Generally, the in vitro, followed by in vivo studies are to be performed. The major metabolic pathways involved in the metabolism of a new molecular entity, as well as the potential of induction of human enzymes involved in drug metabolism are to be examined. In the field of interaction research it is possible to make use of the population pharmacokinetic studies as well as of the pharmacodynamic assessment, and also the postregistration monitoring of the reported adverse reactions and other literature data. Conclusion. In vitro and in vivo drug metabolism and transport studies should be conducted to elucidate the mechanisms and potential for drug-drug interactions. The assessment of their clinical significance should be based on well-defined and validated exposure-response data.


Sign in / Sign up

Export Citation Format

Share Document