Monosyllable speech perception of Japanese hearing aid users with prelingual hearing loss: implications for surgical indication of cochlear implant

2003 ◽  
Vol 67 (10) ◽  
pp. 1061-1067 ◽  
Author(s):  
Shoichiro Fukuda ◽  
Kunihiro Fukushima ◽  
Naomi Toida ◽  
Keiko Tsukamura ◽  
Yukihide Maeda ◽  
...  
2019 ◽  
Vol 40 (3) ◽  
pp. 621-635 ◽  
Author(s):  
Arlene C. Neuman ◽  
Annette Zeman ◽  
Jonathan Neukam ◽  
Binhuan Wang ◽  
Mario A. Svirsky

2015 ◽  
Vol 24 (4) ◽  
pp. 462-468 ◽  
Author(s):  
Jessica J. Messersmith ◽  
Lindsey E. Jorgensen ◽  
Jessica A. Hagg

Purpose The purpose of this study was to determine whether an alternate fitting strategy, specifically adjustment to gains in a hearing aid (HA), would improve performance in patients who experienced poorer performance in the bimodal condition when the HA was fit to traditional targets. Method This study was a retrospective chart review from a local clinic population seen during a 6-month period. Participants included 6 users of bimodal stimulation. Two performed poorer in the cochlear implant (CI) + HA condition than in the CI-only condition. One individual performed higher in the bimodal condition, but the overall performance was low. Three age range–matched users whose performance increased when the HA was used in conjunction with a CI were also included. The HA gain was reduced beyond 2000 Hz. Speech perception scores were obtained pre- and postmodification to the HA fitting. Results All listeners whose HA was programmed using the modified approach demonstrated improved speech perception scores with the modified HA fit in the bimodal condition when compared with the traditional HA fit in the bimodal condition. Conclusion Modifications to gains above 2000 Hz in the HA may improve performance for bimodal listeners who perform more poorly in the bimodal condition when the HA is fit to traditional targets.


2016 ◽  
Vol 21 (03) ◽  
pp. 206-212 ◽  
Author(s):  
Grace Ciscare ◽  
Erika Mantello ◽  
Carla Fortunato-Queiroz ◽  
Miguel Hyppolito ◽  
Ana Reis

Introduction A cochlear implant in adolescent patients with pre-lingual deafness is still a debatable issue. Objective The objective of this study is to analyze and compare the development of auditory speech perception in children with pre-lingual auditory impairment submitted to cochlear implant, in different age groups in the first year after implantation. Method This is a retrospective study, documentary research, in which we analyzed 78 reports of children with severe bilateral sensorineural hearing loss, unilateral cochlear implant users of both sexes. They were divided into three groups: G1, 22 infants aged less than 42 months; G2, 28 infants aged between 43 to 83 months; and G3, 28 older than 84 months. We collected medical record data to characterize the patients, auditory thresholds with cochlear implants, assessment of speech perception, and auditory skills. Results There was no statistical difference in the association of the results among groups G1, G2, and G3 with sex, caregiver education level, city of residence, and speech perception level. There was a moderate correlation between age and hearing aid use time, age and cochlear implants use time. There was a strong correlation between age and the age cochlear implants was performed, hearing aid use time and age CI was performed. Conclusion There was no statistical difference in the speech perception in relation to the patient's age when cochlear implant was performed. There were statistically significant differences for the variables of auditory deprivation time between G3 - G1 and G2 - G1 and hearing aid use time between G3 - G2 and G3 - G1.


2007 ◽  
Author(s):  
James D. Miller ◽  
Charles S. Watson ◽  
Doris J. Kistler ◽  
Frederic L. Wightman ◽  
Jill E. Preminger

2017 ◽  
Vol 28 (09) ◽  
pp. 810-822 ◽  
Author(s):  
Benjamin J. Kirby ◽  
Judy G. Kopun ◽  
Meredith Spratford ◽  
Clairissa M. Mollak ◽  
Marc A. Brennan ◽  
...  

AbstractSloping hearing loss imposes limits on audibility for high-frequency sounds in many hearing aid users. Signal processing algorithms that shift high-frequency sounds to lower frequencies have been introduced in hearing aids to address this challenge by improving audibility of high-frequency sounds.This study examined speech perception performance, listening effort, and subjective sound quality ratings with conventional hearing aid processing and a new frequency-lowering signal processing strategy called frequency composition (FC) in adults and children.Participants wore the study hearing aids in two signal processing conditions (conventional processing versus FC) at an initial laboratory visit and subsequently at home during two approximately six-week long trials, with the order of conditions counterbalanced across individuals in a double-blind paradigm.Children (N = 12, 7 females, mean age in years = 12.0, SD = 3.0) and adults (N = 12, 6 females, mean age in years = 56.2, SD = 17.6) with bilateral sensorineural hearing loss who were full-time hearing aid users.Individual performance with each type of processing was assessed using speech perception tasks, a measure of listening effort, and subjective sound quality surveys at an initial visit. At the conclusion of each subsequent at-home trial, participants were retested in the laboratory. Linear mixed effects analyses were completed for each outcome measure with signal processing condition, age group, visit (prehome versus posthome trial), and measures of aided audibility as predictors.Overall, there were few significant differences in speech perception, listening effort, or subjective sound quality between FC and conventional processing, effects of listener age, or longitudinal changes in performance. Listeners preferred FC to conventional processing on one of six subjective sound quality metrics. Better speech perception performance was consistently related to higher aided audibility.These results indicate that when high-frequency speech sounds are made audible with conventional processing, speech recognition ability and listening effort are similar between conventional processing and FC. Despite the lack of benefit to speech perception, some listeners still preferred FC, suggesting that qualitative measures should be considered when evaluating candidacy for this signal processing strategy.


2011 ◽  
Vol 22 (09) ◽  
pp. 567-577 ◽  
Author(s):  
Christina L. Runge ◽  
Jamie Jensen ◽  
David R. Friedland ◽  
Ruth Y. Litovsky ◽  
Sergey Tarima

Background: The challenges associated with auditory neuropathy spectrum disorder (ANSD) are due primarily to temporal impairment and therefore tend to affect perception of low- to midfrequency sounds. A common treatment option for severe impairment in ANSD is cochlear implantation, and because the degree of impairment is unrelated to degree of hearing loss by audiometric thresholds, this population may have significant acoustic sensitivity in the contralateral ear. Clinically, the question arises as to how we should treat the contralateral ear in this population when there is acoustic hearing—should we plug it, amplify it, implant it, or leave it alone? Purpose: The purpose of this study was to examine the effects of acute amplification and plugging of the contralateral ear compared to no intervention in implanted children with ANSD and aidable contralateral hearing. It was hypothesized that due to impaired temporal processing in ANSD, contralateral acoustic input would interfere with speech perception achieved with the cochlear implant (CI) alone; therefore, speech perception performance will decline with amplification and improve with occlusion. Research Design: Prospective within-subject comparison. Adaptive speech recognition thresholds (SRTs) for monosyllable and spondee word stimuli were measured in quiet and in noise for the intervention configurations. Study Sample: Nine children treated at the Medical College of Wisconsin Koss Cochlear Implant Program participated in the study. Inclusion criteria for this study were children diagnosed with ANSD who were unilaterally implanted, had aidable hearing in the contralateral ear (defined as a three-frequency pure-tone average of ≤80 dB HL), had at least 1 yr of cochlear implant experience, and were able to perform the speech perception task. Intervention: We compared SRT with the CI alone to SRTs with interventions of cochlear implant with a contralateral hearing aid (CI+HA) and cochlear implant with a contralateral earplug (CI+plug). Data Collection and Analysis: SRTs were measured and compared within subjects across listening conditions. Within-subject comparisons were analyzed using paired t-tests, and analyses of predictive variables for effects of contralateral intervention were analyzed using linear regression. Results: Contrary to the hypothesis, the bimodal CI+HA configuration showed a significant improvement in mean performance over the CI-alone configuration in quiet (p = .04). In noise, SRTs were obtained for six subjects, and no significant bimodal benefit was observed (p = .09). There were no consistent effects of occlusion observed across subjects and stimulus conditions. Degree of bimodal benefit showed a significant relationship with performance with the CI alone, with greater bimodal benefit associated with poorer CI-alone performance (p = .01). This finding, however, was limited by floor effects. Conclusions: The results of this study indicate that children with ANSD who are experienced cochlear implant users may benefit from contralateral amplification, particularly for moderate cochlear implant performers. It is unclear from these data whether long-term contralateral hearing aid use in real-world situations would ultimately benefit this population; however, a hearing aid trial is recommended with assessment of bimodal benefit over time. These data may help inform clinical guidelines for determining optimal hearing configurations for unilaterally implanted children with ANSD, particularly when considering candidacy for sequential cochlear implantation.


Sign in / Sign up

Export Citation Format

Share Document