Fishing effects in northeast Atlantic shelf seas: patterns in fishing effort, diversity and community structure. V. Changes in structure of the North Sea groundfish species assemblage between 1925 and 1996

1999 ◽  
Vol 40 (2) ◽  
pp. 153-183 ◽  
Author(s):  
Simon P.R Greenstreet ◽  
Fiona E Spence ◽  
Julie A McMillan
2017 ◽  
Vol 14 (6) ◽  
pp. 1419-1444 ◽  
Author(s):  
David A. Ford ◽  
Johan van der Molen ◽  
Kieran Hyder ◽  
John Bacon ◽  
Rosa Barciela ◽  
...  

Abstract. Phytoplankton form the base of the marine food chain, and knowledge of phytoplankton community structure is fundamental when assessing marine biodiversity. Policy makers and other users require information on marine biodiversity and other aspects of the marine environment for the North Sea, a highly productive European shelf sea. This information must come from a combination of observations and models, but currently the coastal ocean is greatly under-sampled for phytoplankton data, and outputs of phytoplankton community structure from models are therefore not yet frequently validated. This study presents a novel set of in situ observations of phytoplankton community structure for the North Sea using accessory pigment analysis. The observations allow a good understanding of the patterns of surface phytoplankton biomass and community structure in the North Sea for the observed months of August 2010 and 2011. Two physical–biogeochemical ocean models, the biogeochemical components of which are different variants of the widely used European Regional Seas Ecosystem Model (ERSEM), were then validated against these and other observations. Both models were a good match for sea surface temperature observations, and a reasonable match for remotely sensed ocean colour observations. However, the two models displayed very different phytoplankton community structures, with one better matching the in situ observations than the other. Nonetheless, both models shared some similarities with the observations in terms of spatial features and inter-annual variability. An initial comparison of the formulations and parameterizations of the two models suggests that diversity between the parameter settings of model phytoplankton functional types, along with formulations which promote a greater sensitivity to changes in light and nutrients, is key to capturing the observed phytoplankton community structure. These findings will help inform future model development, which should be coupled with detailed validation studies, in order to help facilitate the wider application of marine biogeochemical modelling to user and policy needs.


2015 ◽  
Vol 73 (4) ◽  
pp. 1115-1126 ◽  
Author(s):  
Jeroen van der Kooij ◽  
Sascha M.M. Fässler ◽  
David Stephens ◽  
Lisa Readdy ◽  
Beth E. Scott ◽  
...  

Abstract Fisheries independent monitoring of widely distributed pelagic fish species which conduct large seasonal migrations is logistically complex and expensive. One of the commercially most important examples of such a species in the Northeast Atlantic Ocean is mackerel for which up to recently only an international triennial egg survey contributed to the stock assessment. In this study, we explore whether fisheries acoustic data, recorded opportunistically during the English component of the North Sea International Bottom Trawl Survey, can contribute to an improved understanding of mackerel distribution and provide supplementary data to existing dedicated monitoring surveys. Using a previously published multifrequency acoustic mackerel detection algorithm, we extracted the distribution and abundance of schooling mackerel for the whole of the North Sea during August and September between 2007 and 2013. The spatio-temporal coverage of this unique dataset is of particular interest because it includes part of the unsurveyed summer mackerel feeding grounds in the northern North Sea. Recent increases in landings in Icelandic waters during this season suggested that changes have occurred in the mackerel feeding distribution. Thus far it is poorly understood whether these changes are due to a shift, i.e. mackerel moving away from their traditional feeding grounds in the northern North Sea and southern Norwegian Sea, or whether the species' distribution has expanded. We therefore explored whether acoustically derived biomass of schooling mackerel declined in the northern North Sea during the study period, which would suggest a shift in mackerel distribution rather than an expansion. The results of this study show that in the North Sea, schooling mackerel abundance has increased and that its distribution in this area has not changed over this period. Both of these findings provide, to our knowledge, the first evidence in support of the hypothesis that mackerel have expanded their distribution rather than moved away.


2015 ◽  
Vol 12 (13) ◽  
pp. 4051-4066 ◽  
Author(s):  
M. Thyssen ◽  
S. Alvain ◽  
A. Lefèbvre ◽  
D. Dessailly ◽  
M. Rijkeboer ◽  
...  

Abstract. Phytoplankton observation in the ocean can be a challenge in oceanography. Accurate estimations of its biomass and dynamics will help to understand ocean ecosystems and refine global climate models. Relevant data sets of phytoplankton defined at a functional level and on a sub-meso- and daily scale are thus required. In order to achieve this, an automated, high-frequency, dedicated scanning flow cytometer (SFC, Cytobuoy b.v., the Netherlands) has been developed to cover the entire size range of phytoplankton cells whilst simultaneously taking pictures of the largest of them. This cytometer was directly connected to the water inlet of a PocketFerryBox during a cruise in the North Sea, 08–12 May 2011 (DYMAPHY project, INTERREG IV A "2 Seas"), in order to identify the phytoplankton community structure of near surface waters (6 m) with a high spatial resolution basis (2.2 ± 1.8 km). Ten groups of cells, distinguished on the basis of their optical pulse shapes, were described (abundance, size estimate, red fluorescence per unit volume). Abundances varied depending on the hydrological status of the traversed waters, reflecting different stages of the North Sea blooming period. Comparisons between several techniques analysing chlorophyll a and the scanning flow cytometer, using the integrated red fluorescence emitted by each counted cell, showed significant correlations. For the first time, the community structure observed from the automated flow cytometry data set was compared with PHYSAT reflectance anomalies over a daily scale. The number of matchups observed between the SFC automated high-frequency in situ sampling and remote sensing was found to be more than 2 times better than when using traditional water sampling strategies. Significant differences in the phytoplankton community structure within the 2 days for which matchups were available suggest that it is possible to label PHYSAT anomalies using automated flow cytometry to resolve not only dominant groups but also community structure.


Sign in / Sign up

Export Citation Format

Share Document