pigment analysis
Recently Published Documents


TOTAL DOCUMENTS

228
(FIVE YEARS 50)

H-INDEX

33
(FIVE YEARS 2)

2022 ◽  
Vol 12 ◽  
Author(s):  
Marie-Amélie Blais ◽  
Alex Matveev ◽  
Connie Lovejoy ◽  
Warwick F. Vincent

Little is known about the microbial diversity of rivers that flow across the changing subarctic landscape. Using amplicon sequencing (rRNA and rRNA genes) combined with HPLC pigment analysis and physicochemical measurements, we investigated the diversity of two size fractions of planktonic Bacteria, Archaea and microbial eukaryotes along environmental gradients in the Great Whale River (GWR), Canada. This large subarctic river drains an extensive watershed that includes areas of thawing permafrost, and discharges into southeastern Hudson Bay as an extensive plume that gradually mixes with the coastal marine waters. The microbial communities differed by size-fraction (separated with a 3-μm filter), and clustered into three distinct environmental groups: (1) the GWR sites throughout a 150-km sampling transect; (2) the GWR plume in Hudson Bay; and (3) small rivers that flow through degraded permafrost landscapes. There was a downstream increase in taxonomic richness along the GWR, suggesting that sub-catchment inputs influence microbial community structure in the absence of sharp environmental gradients. Microbial community structure shifted across the salinity gradient within the plume, with changes in taxonomic composition and diversity. Rivers flowing through degraded permafrost had distinct physicochemical and microbiome characteristics, with allochthonous dissolved organic carbon explaining part of the variation in community structure. Finally, our analyses of the core microbiome indicated that while a substantial part of all communities consisted of generalists, most taxa had a more limited environmental range and may therefore be sensitive to ongoing change.


2022 ◽  
Vol 28 (1) ◽  
pp. 85-91
Author(s):  
Vespasiano Borges de Paiva Neto ◽  
Mateus de Aguiar Torrezan ◽  
Manoela Aparecida Vieira da Silva ◽  
Daly Roxana Castro Padilha ◽  
Jerônimo Constantino Borel ◽  
...  

Abstract Cycnoches haagii Barb. Rodr. is an epiphytic orchid very targeted by collectors, but no reference was found in the literature about its reproductive biology. Thus, the purpose of this study was to obtain initial information regarding pollination types and its influence on seed viability of this native orchid of the Brazilian Cerrado, in order to enable future propagation and preservation programs. Pollination among flowers of the same plant (geitonogamy) or different plants (xenogamy) were carried out. Seeds extracted from the capsules were sown in B&G medium, with full and half strength. Seeds from geitonogamic resulted in 25% of albino protocorms and consequently in albino seedlings. This phenomenon did not occur in seedlings derived from xenogamic pollination. Pigment analysis showed that even the albino seedlings presented chlorophylls and carotenoids, however, in significantly minor concentrations, 16% and 37% respectively, in relation to green seedlings. Geitonogamic and xenogamic pollinations resulted in C. haagii viable seeds with high germination percentage (90%) under in vitro conditions. The germination of seeds from xenogamic pollination resulted in chlorophyll or normal seedlings only, and can be recommended at conservation programs. On the other hand, although geitonogamic pollination should be avoided at conservation programs of this orchid species as it leads to albino seedlings, it showed a very interesting system to obtain seedlings with this phenotype, an interesting plant material to future investigation.


2021 ◽  
Author(s):  
Bruno Jesus ◽  
Thierry Jauffrais ◽  
Erik C. L. Trampe ◽  
Johannes W. Goessling ◽  
Charlotte Lekieffre ◽  
...  

AbstractForaminifera are ubiquitously distributed in marine habitats, playing a major role in marine sediment carbon sequestration and the nitrogen cycle. They exhibit a wide diversity of feeding and behavioural strategies (heterotrophy, autotrophy and mixotrophy), including species with the ability of sequestering intact functional chloroplasts from their microalgal food source (kleptoplastidy), resulting in a mixotrophic lifestyle. The mechanisms by which kleptoplasts are integrated and kept functional inside foraminiferal cytosol are poorly known. In our study, we investigated relationships between feeding strategies, kleptoplast spatial distribution and photosynthetic functionality in two shallow-water benthic foraminifera (Haynesina germanica and Elphidium williamsoni), both species feeding on benthic diatoms. We used a combination of observations of foraminiferal feeding behaviour, test morphology, cytological TEM-based observations and HPLC pigment analysis, with non-destructive, single-cell level imaging of kleptoplast spatial distribution and PSII quantum efficiency. The two species showed different feeding strategies, with H. germanica removing diatom content at the foraminifer’s apertural region and E. williamsoni on the dorsal site. All E. williamsoni parameters showed that this species has higher autotrophic capacity albeit both feeding on benthic diatoms. This might represent two different stages in the evolutionary process of establishing a permanent symbiotic relationship, or may reflect different trophic strategies.


Foods ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2251
Author(s):  
Marisa Maia ◽  
Ana Cavaco ◽  
Gonçalo Laureano ◽  
Jorge Cunha ◽  
José Eiras-Dias ◽  
...  

The domesticated species Vitis vinifera L. harbours many cultivars throughout the world that present distinctive phenology and grape quality. Not only have the grapes been used for human consumption, but the leaves are also used as a source of bioactive compounds and are present in the diets of several Mediterranean countries. We have selected seven different cultivars and performed elemental, fatty acid (FA) and pigment profiling. Total reflection X-ray fluorescence (TXRF) enabled the identification of 21 elements. Among them, Na, Ca and K were highly represented in all the cultivars and Zn was prevalent in V. vinifera cv. ‘Pinot noir’ and ‘Cabernet sauvignon’. Through gas chromatography, six FAs were identified, including omega-3 and omega-6 FA, the most abundant mainly in V. vinifera cv. ‘Tinta barroca’, ‘Pinot noir’ and ‘Cabernet sauvignon’. FA composition was used to determine nutritional quality parameters, namely atherogenic, thrombogenic, hypocholesterolemic/hypercholesterolemic and peroxidisability indexes as well as oxidability and oxidative susceptibility. Grapevine leaves were highlighted as a suitable source of health-promoting lipids. Given the popularity of “green” diets, we have also performed a leaf pigment analysis. Seventeen pigments including chlorophylls, trans-lutein, b-carotene and zeaxanthins were detected. ‘C19′ presented the highest content of most of the detected pigments.


2021 ◽  
Vol 18 (18) ◽  
Author(s):  
Phetole MANGENA

Wider genetic diversity has the potential to improve crop productivity of soybean, especially under environmental stress conditions. The pre-treatment of soybean seeds with antimitotic agents to establish improved genetic pool may also contribute to the enhancement of germination, seedling development, morpho-physiological growth and yield. In this study, 2 soybean genotypes viz. TGx1835-10E and Dundee were imbibed in solutions containing different amounts of colchicine (0.0, 0.1, 0.5 and 1 %) to evaluate the variations in germination, morphometric and physiological parameters. The seeds were imbibed for the period of 12 and 24 h before sowing for germination in plastic pots containing moistened sterile vermiculite. The variance components expressed as means, and mean percentage of total variations showed that colchicine concentration and imbibitional duration were the most important sources of variation for all traits, followed by the genotypes. Significant responses were detected for various germination parameters, seedling morphology and physiological contents such as; chlorophyll content, total phenolics, flavonoids as well as total protein and DNA content in the 2 genotypes used. HIGHLIGHTS Mutagenic pre-treatment of seeds via imbibition Germination and seedling growths of colchicine preconditioned seeds Chloroplastidic pigment analysis of pre-treated seedlings Physiological valuation of primary and secondary metabolites in grown seedlings Role of colchicine on germination, seedling development and growth of soybean plantlets GRAPHICAL ABSTRACT


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0254864
Author(s):  
Lijin Lian ◽  
Xuejuan Hu ◽  
Zhenhong Huang ◽  
Liang Hu ◽  
Lu Xu

A rapid and cost-effective system is vital for the detection of harmful algae that causes environmental problems in terms of water quality. The approach for algae detection was to capture images based on hyperspectral fluorescence imaging microscope by detecting specific fluorescence signatures. With the high degree of overlapping spectra of algae, the distribution of pigment in the region of interest was unknown according to a previous report. We propose an optimization method of multivariate curve resolution (MCR) to improve the performance of pigment analysis. The reconstruction image described location and concentration of the microalgae pigments. This result indicated the cyanobacterial pigment distribution and mapped the relative pigment content. In conclusion, with the advantage of acquiring two-dimensional images across a range of spectra, HSI conjoining spectral features with spatial information efficiently estimated specific features of harmful microalgae in MCR models.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5138
Author(s):  
Tania Kleynhans ◽  
David W. Messinger ◽  
Roger L. Easton ◽  
John K. Delaney

To better understand and preserve works of art, knowledge is needed about the pigments used to create the artwork. Various noninvasive techniques have been used previously to create pigment maps, such as combining X-ray fluorescence and hyperspectral imaging data. Unfortunately, most museums have limited funding for the expense of specialized research equipment, such as hyperspectral reflectance imaging systems. However, many museums have hand-held point X-ray fluorescence systems attached to motorized easels for scanning artwork. To assist museums in acquiring data that can produce similar results to that of HSI systems, while minimizing equipment costs, this study designed and modeled a prototype system to demonstrate the expected performance of a low-cost multispectral system that can be attached to existing motorized easels. We show that multispectral systems with a well-chosen set of spectral bands can often produce classification maps with value on par with hyperspectral systems. This study analyzed the potential for capturing data with a point scanning system through predefined filters. By applying the system and noise modeling parameters to HSI data captured from a 14th-Century illumination, the study reveals that the proposed multispectral imaging system is a viable option for this need.


2021 ◽  
Vol 58 (7) ◽  
pp. 427-445
Author(s):  
C. Pauly ◽  
K. Frost ◽  
S. Slawik ◽  
F. Mücklich ◽  
R. Väth ◽  
...  

Abstract For the chemical and structural analysis of paint pigments from a historic “Frankfurt Kitchen”, a correlative approach was employed, using optical microscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy complemented by X-ray phase analysis. This paper will demonstrate how metallographic techniques can be used for issues beyond our traditional area of activity.


Sign in / Sign up

Export Citation Format

Share Document