2006 ◽  
Vol 2006 ◽  
pp. 1-5 ◽  
Author(s):  
F. Kadırgan

The efficiencies of electrochemically prepared nano-thick CdS and black nickel coatings were investigated as a function of their preparation conditions in the application field of energy; such as, solar-electricity conversion, solar cells, and solar-thermal conversion, spectrally selective solar collectors.


Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2722
Author(s):  
Chunlei Sun ◽  
Caiyan Qin ◽  
Han Zhai ◽  
Bin Zhang ◽  
Xiaohu Wu

Plasmonic nanofluids have excellent optical properties in solar energy absorption and have been widely studied in solar thermal conversion technology. The absorption of the visible region of solar energy by ordinary metal nanoparticles is usually limited to a narrow resonance band, so it is necessary to enhance the coupling effect of nanoparticles in the visible spectrum region to improve absorption efficiency. However, it is still a difficult task to improve solar energy absorption by adjusting the structure and performance of nanoparticles. In this paper, a plasma dimer Ag nanoparticle is proposed to excite localized surface plasmon resonance (LSPR). Compared with an ordinary Ag nanoparticle in the visible region, the plasmonic Ag dimer nanoparticle produces more absorption peaks and broader absorption bands, which can broaden solar energy absorption. By analyzing the electromagnetic field of the nanoparticle, the resonance mode of the plasma dimer is discussed. The effects of the geometric dimensions of the nanoparticle and the embedding of two spheres on the optical properties are studied. In addition, the effects of a trimer and its special structure on the optical properties are also analyzed. The results show that the proposed plasma dimer Ag nanoparticle has broad prospects for application in solar thermal conversion technology.


Nanomaterials ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1329 ◽  
Author(s):  
Nicole Angel ◽  
S. N. Vijayaraghavan ◽  
Feng Yan ◽  
Lingyan Kong

Solar thermal techniques provide a promising method for the direct conversion of solar energy to thermal energy for applications, such as water desalination. To effectively realize the optimal potential of solar thermal conversion, it is desirable to construct an assembly with localized heating. Specifically, photoactive semiconducting nanoparticles, when utilized as independent light absorbers, have successfully demonstrated the ability to increase solar vapor efficiency. Additionally, bio-based fibers have shown low thermal conductive photocorrosion. In this work, cellulose acetate (CA) fibers were loaded with cadmium selenide (CdSe) nanoparticles to be employed for solar thermal conversion and then subsequently evaluated for both their resulting morphology and conversion potential and efficiency. Electrospinning was employed to fabricate the CdSe-loaded CA fibers by adjusting the CA/CdSe ratio for increased solar conversion efficiency. The microstructural and chemical composition of the CdSe-loaded CA fibers were characterized. Additionally, the optical sunlight absorption performance was evaluated, and it was demonstrated that the CdSe nanoparticles-loaded CA fibers have the potential to significantly improve solar energy absorption. The photothermal conversion under 1 sun (100 mW/cm2) demonstrated that the CdSe nanoparticles could increase the temperature up to 43 °C. The CdSe-loaded CA fibers were shown as a feasible and promising hybrid material for achieving efficient solar thermal conversion.


1991 ◽  
Vol 13 (4) ◽  
pp. 461-482 ◽  
Author(s):  
C. HADDOCK ◽  
J. S. C. MCKEE

2019 ◽  
Vol 191 ◽  
pp. 372-380 ◽  
Author(s):  
Xiaobo Wang ◽  
Tingting Luo ◽  
Qingyu Li ◽  
Xudong Cheng ◽  
Kewei Li

Sign in / Sign up

Export Citation Format

Share Document