Approximation algorithms for the metric maximum clustering problem with given cluster sizes

2003 ◽  
Vol 31 (3) ◽  
pp. 179-184 ◽  
Author(s):  
Refael Hassin ◽  
Shlomi Rubinstein
2011 ◽  
Vol 474-476 ◽  
pp. 924-927 ◽  
Author(s):  
Xiao Xin

Given an undirected graph G=(V, E) with real nonnegative weights and + or – labels on its edges, the correlation clustering problem is to partition the vertices of G into clusters to minimize the total weight of cut + edges and uncut – edges. This problem is APX-hard and has been intensively studied mainly from the viewpoint of polynomial time approximation algorithms. By way of contrast, a fixed-parameter tractable algorithm is presented that takes treewidth as the parameter, with a running time that is linear in the number of vertices of G.


Author(s):  
Sai Ji ◽  
Jun Li ◽  
Zijun Wu ◽  
Yicheng Xu

In this paper, we propose a so-called capacitated min–max correlation clustering model, a natural variant of the min–max correlation clustering problem. As our main contribution, we present an integer programming and its integrality gap analysis for the proposed model. Furthermore, we provide two approximation algorithms for the model, one of which is a bi-criteria approximation algorithm and the other is based on LP-rounding technique.


2018 ◽  
Vol 1 (1) ◽  
pp. 87-112 ◽  
Author(s):  
Kamal Z. Zamli ◽  
◽  
Abdulrahman Alsewari ◽  
Bestoun S. Ahmed ◽  
◽  
...  

Author(s):  
Laith Mohammad Abualigah ◽  
Essam Said Hanandeh ◽  
Ahamad Tajudin Khader ◽  
Mohammed Abdallh Otair ◽  
Shishir Kumar Shandilya

Background: Considering the increasing volume of text document information on Internet pages, dealing with such a tremendous amount of knowledge becomes totally complex due to its large size. Text clustering is a common optimization problem used to manage a large amount of text information into a subset of comparable and coherent clusters. Aims: This paper presents a novel local clustering technique, namely, β-hill climbing, to solve the problem of the text document clustering through modeling the β-hill climbing technique for partitioning the similar documents into the same cluster. Methods: The β parameter is the primary innovation in β-hill climbing technique. It has been introduced in order to perform a balance between local and global search. Local search methods are successfully applied to solve the problem of the text document clustering such as; k-medoid and kmean techniques. Results: Experiments were conducted on eight benchmark standard text datasets with different characteristics taken from the Laboratory of Computational Intelligence (LABIC). The results proved that the proposed β-hill climbing achieved better results in comparison with the original hill climbing technique in solving the text clustering problem. Conclusion: The performance of the text clustering is useful by adding the β operator to the hill climbing.


Author(s):  
Kai Han ◽  
Shuang Cui ◽  
Tianshuai Zhu ◽  
Enpei Zhang ◽  
Benwei Wu ◽  
...  

Data summarization, i.e., selecting representative subsets of manageable size out of massive data, is often modeled as a submodular optimization problem. Although there exist extensive algorithms for submodular optimization, many of them incur large computational overheads and hence are not suitable for mining big data. In this work, we consider the fundamental problem of (non-monotone) submodular function maximization with a knapsack constraint, and propose simple yet effective and efficient algorithms for it. Specifically, we propose a deterministic algorithm with approximation ratio 6 and a randomized algorithm with approximation ratio 4, and show that both of them can be accelerated to achieve nearly linear running time at the cost of weakening the approximation ratio by an additive factor of ε. We then consider a more restrictive setting without full access to the whole dataset, and propose streaming algorithms with approximation ratios of 8+ε and 6+ε that make one pass and two passes over the data stream, respectively. As a by-product, we also propose a two-pass streaming algorithm with an approximation ratio of 2+ε when the considered submodular function is monotone. To the best of our knowledge, our algorithms achieve the best performance bounds compared to the state-of-the-art approximation algorithms with efficient implementation for the same problem. Finally, we evaluate our algorithms in two concrete submodular data summarization applications for revenue maximization in social networks and image summarization, and the empirical results show that our algorithms outperform the existing ones in terms of both effectiveness and efficiency.


Sign in / Sign up

Export Citation Format

Share Document