Approximation algorithms for two variants of correlation clustering problem

Author(s):  
Sai Ji ◽  
Dachuan Xu ◽  
Min Li ◽  
Yishui Wang
2011 ◽  
Vol 474-476 ◽  
pp. 924-927 ◽  
Author(s):  
Xiao Xin

Given an undirected graph G=(V, E) with real nonnegative weights and + or – labels on its edges, the correlation clustering problem is to partition the vertices of G into clusters to minimize the total weight of cut + edges and uncut – edges. This problem is APX-hard and has been intensively studied mainly from the viewpoint of polynomial time approximation algorithms. By way of contrast, a fixed-parameter tractable algorithm is presented that takes treewidth as the parameter, with a running time that is linear in the number of vertices of G.


Author(s):  
Sai Ji ◽  
Jun Li ◽  
Zijun Wu ◽  
Yicheng Xu

In this paper, we propose a so-called capacitated min–max correlation clustering model, a natural variant of the min–max correlation clustering problem. As our main contribution, we present an integer programming and its integrality gap analysis for the proposed model. Furthermore, we provide two approximation algorithms for the model, one of which is a bi-criteria approximation algorithm and the other is based on LP-rounding technique.


2020 ◽  
Vol 109 (9-10) ◽  
pp. 1779-1802
Author(s):  
Morteza Haghir Chehreghani ◽  
Mostafa Haghir Chehreghani

Abstract We propose unsupervised representation learning and feature extraction from dendrograms. The commonly used Minimax distance measures correspond to building a dendrogram with single linkage criterion, with defining specific forms of a level function and a distance function over that. Therefore, we extend this method to arbitrary dendrograms. We develop a generalized framework wherein different distance measures and representations can be inferred from different types of dendrograms, level functions and distance functions. Via an appropriate embedding, we compute a vector-based representation of the inferred distances, in order to enable many numerical machine learning algorithms to employ such distances. Then, to address the model selection problem, we study the aggregation of different dendrogram-based distances respectively in solution space and in representation space in the spirit of deep representations. In the first approach, for example for the clustering problem, we build a graph with positive and negative edge weights according to the consistency of the clustering labels of different objects among different solutions, in the context of ensemble methods. Then, we use an efficient variant of correlation clustering to produce the final clusters. In the second approach, we investigate the combination of different distances and features sequentially in the spirit of multi-layered architectures to obtain the final features. Finally, we demonstrate the effectiveness of our approach via several numerical studies.


Sign in / Sign up

Export Citation Format

Share Document