CHARACTERISTIC CONDITIONS FOR THE COMPLETE INFINITESIMAL GENERATORS OF ANALYTIC SEMIGROUPS OF GROWTH ORDER α

2000 ◽  
Vol 20 (1) ◽  
pp. 97-103
Author(s):  
Xianwen Zhang
2011 ◽  
Vol 90 (104) ◽  
pp. 47-64 ◽  
Author(s):  
Marko Kostic

The power (?A)b, b ? C is defined for a closed linear operator A whose resolvent is polynomially bounded on the region which is, in general, strictly contained in an acute angle. It is proved that all structural properties of complex powers of densely defined operators with polynomially bounded resolvent remain true in the newly arisen situation. The fractional powers are considered as generators of analytic semigroups of growth order r > 0 and applied in the study of corresponding incomplete abstract Cauchy problems. In the last section, the constructed powers are incorporated in the analysis of the existence and growth of mild solutions of operators generating fractionally integrated semigroups and cosine functions.


2021 ◽  
Author(s):  
Tim Binz

AbstractWe consider the Dirichlet-to-Neumann operator associated to a strictly elliptic operator on the space $$\mathrm {C}(\partial M)$$ C ( ∂ M ) of continuous functions on the boundary $$\partial M$$ ∂ M of a compact manifold $$\overline{M}$$ M ¯ with boundary. We prove that it generates an analytic semigroup of angle $$\frac{\pi }{2}$$ π 2 , generalizing and improving a result of Escher with a new proof. Combined with the abstract theory of operators with Wentzell boundary conditions developed by Engel and the author, this yields that the corresponding strictly elliptic operator with Wentzell boundary conditions generates a compact and analytic semigroups of angle $$\frac{\pi }{2}$$ π 2 on the space $$\mathrm {C}(\overline{M})$$ C ( M ¯ ) .


Axioms ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 126
Author(s):  
Hong Li ◽  
Hongyan Xu

This article is to investigate the existence of entire solutions of several quadratic trinomial difference equations f(z+c)2+2αf(z)f(z+c)+f(z)2=eg(z), and the partial differential difference equations f(z+c)2+2αf(z+c)∂f(z)∂z1+∂f(z)∂z12=eg(z),f(z+c)2+2αf(z+c)∂f(z)∂z1+∂f(z)∂z2+∂f(z)∂z1+∂f(z)∂z22=eg(z). We establish some theorems about the forms of the finite order transcendental entire solutions of these functional equations. We also list a series of examples to explain the existence of the finite order transcendental entire solutions of such equations. Meantime, some examples show that there exists a very significant difference with the previous literature on the growth order of the finite order transcendental entire solutions. Our results show that some functional equations can admit the transcendental entire solutions with any positive integer order. These results make a few improvements of the previous theorems given by Xu and Cao, Liu and Yang.


1988 ◽  
Vol 61 (3) ◽  
pp. 235-255 ◽  
Author(s):  
Piermarco Cannarsa ◽  
Vincenzo Vespri

Author(s):  
NOBUHIRO ASAI ◽  
IZUMI KUBO ◽  
HUI-HSIUNG KUO

In this paper we will develop a systematic method to answer the questions (Q1) (Q2) (Q3) (Q4) (stated in Sec. 1) with complete generality. As a result, we can solve the difficulties (D1) (D2) (discussed in Sec. 1) without uncertainty. For these purposes we will introduce certain classes of growth functions u and apply the Legendre transform to obtain a sequence which leads to the weight sequence {α(n)} first studied by Cochran et al.6 The notion of (nearly) equivalent functions, (nearly) equivalent sequences and dual Legendre functions will be defined in a very natural way. An application to the growth order of holomorphic functions on ℰc will also be discussed.


Sign in / Sign up

Export Citation Format

Share Document