scholarly journals Somatic embryos of Picea abies behave like isolated zygotic embryos in vitro but with greatly reduced physiological vigour

2003 ◽  
Vol 69 (2) ◽  
pp. 176-185 ◽  
Author(s):  
C.H. Bornman ◽  
O.S.P. Dickens ◽  
C.F. van der Merwe ◽  
J. Coetzee ◽  
A.-M. Botha ◽  
...  
2019 ◽  
Author(s):  
Jordan Demone ◽  
Jingqin Mao ◽  
Shen Wan ◽  
Maryam Nourimand ◽  
Äsbjörn Erik Hansen ◽  
...  

AbstractThe ‘triple-blue’ cultivar of blue spruce (Picea pungens Hoopsii) is notably recalcitrant towards the realm of traditional vegetative propagation methods. Its ability to naturally proliferate is limited by ovule and embryo abortion during the growing season, leading to low viable seed yield. In this study, we established a protocol using somatic embryogenesis (SE) as a means of propagating this popular ornamental cultivar. We collected cones from Hoopsii trees at seven different timepoints throughout the growing season (mid-June to late July in Ottawa (Plant Hardiness Zone 5A)). Female megagametophytes were harvested following each collection and immature zygotic embryos were plated onto induction media. Early somatic embryos began developing from the embryonic tissue (ET) three to five weeks following induction. The highest ET initiation frequency occurred from embryos collected June 20–July 10, suggesting that developmental stage of the embryo was a significant factor in SE induction. The conversion of mature somatic embryos into plantlets (emblings) was completed in eight–ten weeks at a rate of 92.8%. In this study, we demonstrate that in vitro somatic embryogenesis using our optimized protocol is a fast and prolific method for the mass propagation of Hoopsii blue spruce. This is the first report on the production of somatic Hoopsii emblings.


CORD ◽  
2017 ◽  
Vol 33 (2) ◽  
pp. 11
Author(s):  
Anitha Karun

Coconut is one of the principal crops of India cultivated in over 35 districts mainly in the southern states. The productivity of the crop is declining in many of the traditionally cultivated regions owing to ageing plantations as well as biotic and abiotic stresses. These plantations are to be replanted with high yielding varieties/hybrids for which adequate quantity of quality planting material is not available. Even though tissue culture research was initiated in many laboratories in the country, the work was eventually phased out in most of the laboratories for want of a repeatable protocol.  At ICAR-CPCRI, coconut tissue culture programs have been continuing for the past three decades. The attempts made include experimentation with different explants viz., immature inflorescence, plumular tissues, mature palm shoot meristem, ovary and anthers and different culture media supplemented with varying levels and types of hormones. Some of the successful protocols developed at the Institute include coconut zygotic embryo culture for collection and exchange of germplasm, cryopreservation and retrieval of zygotic embryos and pollen and plantlet regeneration from plumular tissues. Even though ICAR-CPCRI has succeeded in obtaining plantlets via direct organogenesis from inflorescence explants, the absence of friable calli formation from explants, the low rate of somatic embryo formation, large number of cultures turning to abnormal shoot development, non conversion of somatic embryos into plantlets, and formation of abnormal somatic embryos remain the major bottlenecks. Gene expression studies are being currently undertaken to decipher the molecular basis of in vitro recalcitrance.


HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 783E-783
Author(s):  
S.K. Dhir ◽  
U.L. Yadava

An efficient protocol has been developed for the in vitro multiplication of papaya (Carica papaya L.) through somatic embryogenesis utilizing immature zgotic embryos. Somatic embryos were initiated on MS basel media supplemented with 5 mg·liter–1 2,4-D, 400 mg·liter–1 glutamine, and 6% sucrose. After culturing for 2 months, 65% of the explants became highly embryogenic. Each explant produced 50 to 80 embryos in 4 months on culture induction medium. Frequency of embryogenesis was increased (75 to 150 somatic embryos on 80% explants) upon supplementing medium with 4% maltose as a carbon source and 100 mg·liter–1 L-asparagine. The embryogenic callus appeared yellow and embryos at different stages of development were well-organized. On regular subculturing, these cultures continued to produce secondary embryos. Following their transfer to the hormone-free medium supplemented with 4% maltose, these embryos germinated. The somatic embryogenesis system is rapid, repetitive, and highly proliferative. Thus, this system may have a potential use in the development of synthetic seed and transgenic papaya plants. Details of important factors affecting somatic embryogenesis will be discussed.


1990 ◽  
Vol 68 (3) ◽  
pp. 487-491 ◽  
Author(s):  
N. Arumugam ◽  
Sant S. Bhojwani

In vitro multiplication of Podophyllum hexandrum Royle (Podophyllaceae) via somatic embryogenesis is reported. The callus derived from zygotic embryos on Murashige and Skoog medium containing 2 μM BA and 0.5μM IAA differentiated globular embryos. On this medium the globular embryos continued to multiply but failed to mature. Further development of the embryos occurred if the sucrose level in the basal medium was raised to 6% or the medium was supplemented with 1–10 μM NAA. Light and temperatures higher than 25 °C suppressed embryogenesis. Embryogenic potential of the callus has been maintained for over 20 months through subcultures. The somatic embryos developed into plantlets on the basal medium. Key words: endangered species, podophyllotoxin, Podophyllum, somatic embryogenesis.


2017 ◽  
Vol 59 (1) ◽  
pp. 93-103 ◽  
Author(s):  
Teresa Hazubska-Przybył ◽  
Monika Dering

AbstractEmbryogenic cultures of plants are exposed to various stress factors bothin vitroand during cryostorage. In order to safely include the plant material obtained by somatic embryogenesis in combination with cryopreservation for breeding programs, it is necessary to monitor its genetic stability. The aim of the present study was the assessment of somaclonal variation in plant material obtained from embryogenic cultures ofPicea abies(L.) Karst. andP. omorika(Pančić) Purk. maintainedin vitroor stored in liquid nitrogen by the pregrowth-dehydration method. The analysis of genetic conformity with using microsatellite markers was performed on cotyledonary somatic embryos (CSE), germinating somatic embryos (GSE) and somatic seedlings (SS), obtained from tissues maintainedin vitroor from recovered embryogenic tissues (ETc) and CSE obtained after cryopreservation. The analysis revealed changes in the DNA of somatic embryogenesis-derived plant material of bothPiceaspp. They were found in plant material from 8 out of 10 tested embryogenic lines ofP. abiesand in 10 out of 19 embryogenic lines ofP. omorikaafterin vitroculture. Changes were also detected in plant material obtained after cryopreservation. Somaclonal variation was observed in ETc and CSE ofP. omorikaand at ETv stage ofP. abies. However, most of the changes were induced at the stage of somatic embryogenesis initiation. These results confirm the need for monitoring the genetic stability of plants obtained by somatic embryogenesis and after cryopreservation for both spruce species.


2011 ◽  
Vol 77 (3) ◽  
pp. 189-199 ◽  
Author(s):  
Teresa Hazubska-Przybył ◽  
Krystyna Bojarczyk

Somatic embryogenesis was studied in four spruce species (<em>Picea abies</em>, <em>P. omorika</em>, <em>P. pungens</em> 'Glauca' and <em>P. brewenana</em>) to determine if this method can be used for in vitro propagation of coniferous trees. The highest frequency of initiation of embryogenic tissue was obtained when mature zygotic embryos were used as explants. It ranged then from 10.8% (<em>P. brewenana</em>) to 23.75% (<em>P. omorika</em> and <em>P. pungens</em> 'Glauca'). The frequency of embryogenic tissue initiation was strongly affected by medium composition, i.e. addition of appropriate auxins (2,4-D, NAA, Picloram) and sucrose concentration (10-20 g<sup>-1</sup>"1). A lower frequency was obtained in <em>Picea omorika</em> (10%) when megagametophytes (endosperms with immature zygotic embryos) were used as explants. No emryogenic tissue was produced from hypocotyls, cotyledons and needles. A satisfactory frequency was achieved with the use of somatic embryos of <em>Picea abies</em> (30%). The proliferation of embryogenic cell lines of spruces was affected by medium type. The experiments resulted in production of somatic plantlets of <em>P. abies</em> and <em>P. omorika</em>. This enables the application of this method of spruce micropropagation for genetic and breeding research or for nursery production.


2005 ◽  
Vol 48 (6) ◽  
pp. 895-903 ◽  
Author(s):  
Neusa Steiner ◽  
Felipe do Nascimento Vieira ◽  
Sara Maldonado ◽  
Miguel Pedro Guerra

The aim of the present work was to establish in vitro conditions for the induction, stabilization and proliferation of embryogenic cultures of A. angustifolia. Pre-cotyledonary staged zygotic embryos inoculated BM medium supplemented with 5 µM 2,4- D, 2 µM BAP and Kin, and 3% maltose or sucrose resulted in 66.7% induction rate. The rate of induction of embryogenic cultures was affected by the carbon source, as well the multiplication and morphology of the embryogenic cultures. Embryogenic cultures maintained in BM medium with maltose presented bipolar morphology. Globular somatic embryos were obtained BM medium with 9% (PEG) and (9%) maltose. These results could establish an in vitro regenerative protocol towards the conservation and improvement of this important species.


2012 ◽  
Vol 58 (No. 2) ◽  
pp. 84-90
Author(s):  
B. Vooková ◽  
J. Hřib ◽  
V. Adamec

Defence reactions of desiccated cotyledonary somatic embryos and mature zygotic embryos of Abies numidica were tested by dual cultures with tester, fungus Phaeolus schweinitzii. Both types of embryos expressed defence reactions. Mutual comparisons of zygotic and somatic embryos showed important differences between defence reactions against mycelial growth towards these embryos. Greater defence reactions were observed in zygotic embryos relative to defence found in somatic embryos. &nbsp;


Sign in / Sign up

Export Citation Format

Share Document