scholarly journals A kinetic formulation for multi-branch entropy solutions of scalar conservation laws

Author(s):  
Y. Brenier ◽  
L. Corrias
2017 ◽  
Vol 62 (4) ◽  
pp. 1620-1635 ◽  
Author(s):  
Sebastien Blandin ◽  
Xavier Litrico ◽  
Maria Laura Delle Monache ◽  
Benedetto Piccoli ◽  
Alexandre Bayen

2014 ◽  
Vol 11 (03) ◽  
pp. 621-632
Author(s):  
Misha Perepelitsa

We consider a variational kinetic formulation for weak, entropy solutions of scalar conservation laws due to Brenier. The solutions in this formulation are represented by a kinetic density function Y that solves a differential inclusion ∂tY ∈ -A(Y) = -∂vf ⋅ ∇xY -∂ IK(Y), where IK is the indicator function of a closed, convex cone K. Under a certain "non-degeneracy" condition we determine a maximal monotone extension of A and use it to prove the existence of strong and weak solutions of the differential inclusion for a general, possibly degenerate, flux ∂vf(v). Furthermore, we discuss several properties of strong solutions.


2014 ◽  
Vol 11 (04) ◽  
pp. 655-677 ◽  
Author(s):  
C. Bourdarias ◽  
M. Gisclon ◽  
S. Junca

We obtain new fine properties of entropy solutions to scalar nonlinear conservation laws. For this purpose, we study the "fractional BV spaces" denoted by BVs(ℝ) (for 0 < s ≤ 1), which were introduced by Love and Young in 1937 and closely related to the critical Sobolev space Ws,1/s(ℝ). We investigate these spaces in connection with one-dimensional scalar conservation laws. The BVs spaces allow one to work with less regular functions than BV functions and appear to be more natural in this context. We obtain a stability result for entropy solutions with BVs initial data. Furthermore, for the first time, we get the maximal Ws,p smoothing effect conjectured by Lions, Perthame and Tadmor for all nonlinear (possibly degenerate) convex fluxes.


2018 ◽  
Vol 15 (04) ◽  
pp. 623-691 ◽  
Author(s):  
Elio Marconi

We deal with the regularizing effect that, in scalar conservation laws in one space dimension, the nonlinearity of the flux function [Formula: see text] has on the entropy solution. More precisely, if the set [Formula: see text] is dense, the regularity of the solution can be expressed in terms of [Formula: see text] spaces, where [Formula: see text] depends on the nonlinearity of [Formula: see text]. If moreover the set [Formula: see text] is finite, under the additional polynomial degeneracy condition at the inflection points, we prove that [Formula: see text] for every [Formula: see text] and that this can be improved to [Formula: see text] regularity except an at most countable set of singular times. Finally, we present some examples that show the sharpness of these results and counterexamples to related questions, namely regularity in the kinetic formulation and a property of the fractional BV spaces.


2012 ◽  
Vol 09 (04) ◽  
pp. 571-611 ◽  
Author(s):  
ADIMURTHI ◽  
SHYAM SUNDAR GHOSHAL ◽  
G. D. VEERAPPA GOWDA

We consider scalar conservation laws in one space dimension with convex flux and we establish a new structure theorem for entropy solutions by identifying certain shock regions of interest, each of them representing a single shock wave at infinity. Using this theorem, we construct a smooth initial data with compact support for which the solution exhibits infinitely many shock waves asymptotically in time. Our proof relies on Lax–Oleinik explicit formula and the notion of generalized characteristics introduced by Dafermos.


Sign in / Sign up

Export Citation Format

Share Document