KA-672 inhibits rat brain acetylcholinesterase in vitro but not in vivo

1999 ◽  
Vol 263 (2-3) ◽  
pp. 193-196 ◽  
Author(s):  
Michael Hilgert ◽  
Michael Nöldner ◽  
Shyam S Chatterjee ◽  
Jochen Klein
2002 ◽  
Vol 364 (2) ◽  
pp. 343-347 ◽  
Author(s):  
Gareth J.O. EVANS ◽  
Alan MORGAN

The secretory vesicle cysteine string proteins (CSPs) are members of the DnaJ family of chaperones, and function at late stages of Ca2+-regulated exocytosis by an unknown mechanism. To determine novel binding partners of CSPs, we employed a pull-down strategy from purified rat brain membrane or cytosolic proteins using recombinant hexahistidine-tagged (His6-)CSP. Western blotting of the CSP-binding proteins identified synaptotagmin I to be a putative binding partner. Furthermore, pull-down assays using cAMP-dependent protein kinase (PKA)-phosphorylated CSP recovered significantly less synaptotagmin. Complexes containing CSP and synaptotagmin were immunoprecipitated from rat brain membranes, further suggesting that these proteins interact in vivo. Binding assays in vitro using recombinant proteins confirmed a direct interaction between the two proteins and demonstrated that the PKA-phosphorylated form of CSP binds synaptotagmin with approximately an order of magnitude lower affinity than the non-phosphorylated form. Genetic studies have implicated each of these proteins in the Ca2+-dependency of exocytosis and, since CSP does not bind Ca2+, this novel interaction might explain the Ca2+-dependent actions of CSP.


1981 ◽  
Vol 7 (3) ◽  
pp. 237-242 ◽  
Author(s):  
Kristin H. Milby ◽  
Ivan N. Mefford ◽  
Willie Chey ◽  
Ralph N. Adams
Keyword(s):  

1990 ◽  
Vol 183 (5) ◽  
pp. 1623
Author(s):  
J.A.D.M. Tonnaer ◽  
P. Room ◽  
W.M.J.B. Van Gemert ◽  
L.P.C. Delbressine ◽  
T. de Boer ◽  
...  

2018 ◽  
Vol 173 ◽  
pp. 20-30 ◽  
Author(s):  
Meric A. Altinoz ◽  
Josephine Nalbantoglu ◽  
Aysel Ozpinar ◽  
M. Emin Ozcan ◽  
Rolando F. Del Maestro ◽  
...  
Keyword(s):  

1995 ◽  
Vol 7 (3) ◽  
pp. 385 ◽  
Author(s):  
LD Longo ◽  
S Packianathan

Recent studies in vivo have demonstrated that ornithine decarboxylase (ODC) activity in the fetal rat brain is elevated 4-5-fold by acute maternal hypoxia. This hypoxic-associated increase is seen in the rat brain in both the newborn and the adult. Because of the intimate involvement of ODC in transcription and translation, as well as in growth and development, it is imperative that the manner in which hypoxia affects the regulation of this enzyme be better understood. In order to achieve this, a brain preparation in vitro was required to eliminate the confounding effects of the dam on the fetal and newborn brain ODC activity in vivo. Therefore, brain slices from 3-4-day-old (P-3) newborn rats were utilized to test the hypothesis that ODC activity increases in response to hypoxia in vitro. Cerebral slices from the P-3 rat pups were allowed to equilibrate and recover in artificial cerebrospinal fluid (ACSF) continuously bubbled with a mixture of 95% O2 and 5% CO2 for 1 h before beginning hypoxic exposures. Higher basal ODC activities were obtained by treating the slices with 0.03% fetal bovine serum (FBS) and 0.003% bovine serum albumin (BSA), rather than with ACSF alone. Hypoxia was induced in the slices by replacing the gas with 40%, 21%, 10%, or 5% O2, all with 5% CO2 and balance N2. With FBS and BSA treatment, ODC activity was maintained at about 0.15-0.11 nM CO2 mg-1 protein h-1 throughout the experiment, which was 2-3-fold higher than that without FBS and BSA. ODC activity increased significantly and peaked between 1 h and 2 h after initiation of hypoxia. For instance, with 21% O2, ODC activity increased approximately 1.5-fold at 1 h and approximately 2-fold at 2 h. These studies demonstrate that: (1) the hypoxic-induced increases observed in vivo in the fetal and newborn rat brain ODC activity can be approximated in a newborn rat brain slice preparation in vitro; (2) newborn rat brain slice preparations may provide an alternative to methods in vivo or cell culture methods for studying the regulation of acute hypoxic-induced enzymes; and (3) high, stable baseline ODC activities in brain slices suggest that the cells in the slice are capable of active metabolism if FBS and BSA are available to mimic conditions in vivo.


Sign in / Sign up

Export Citation Format

Share Document