brain slice
Recently Published Documents


TOTAL DOCUMENTS

501
(FIVE YEARS 73)

H-INDEX

48
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Raul Ramos ◽  
Chi-Hong Wu ◽  
Gina G Turrigiano

Generalization is an adaptive mnemonic process in which an animal can leverage past learning experiences to navigate future scenarios, but overgeneralization is a hallmark feature of anxiety disorders. Therefore, understanding the synaptic plasticity mechanisms that govern memory generalization and its persistence is an important goal. Here, we demonstrate that strong CTA conditioning results in a long-lasting generalized aversion that persists for at least two weeks. Using brain slice electrophysiology and activity-dependent labeling of the conditioning-active neuronal ensemble within the gustatory cortex, we find that strong CTA conditioning induces a long-lasting increase in synaptic strengths that occurs uniformly across superficial and deep layers of GC. Repeated exposure to salt, the generalized tastant, causes a rapid attenuation of the generalized aversion that correlates with a reversal of the CTA-induced increases in synaptic strength. Unlike the uniform strengthening that happens across layers, reversal of the generalized aversion results in a more pronounced depression of synaptic strengths in superficial layers. Finally, the generalized aversion and its reversal do not impact the acquisition and maintenance of the aversion to the conditioned tastant (saccharin). The strong correlation between the generalized aversion and synaptic strengthening, and the reversal of both in superficial layers by repeated salt exposure, strongly suggests that the synaptic changes in superficial layers contribute to the formation and reversal of the generalized aversion. In contrast, the persistence of synaptic strengthening in deep layers correlates with the persistence of CTA. Taken together, our data suggest that layer-specific synaptic plasticity mechanisms separately govern the persistence and generalization of CTA memory.


2021 ◽  
Author(s):  
Sergei Karnup ◽  
William C. DeGroat ◽  
Jonathan M. Beckel ◽  
Changfeng Tai

Background: Electrical stimulation in the kilohertz-frequency range has been successfully used for treatment of various neurological disorders. Nevertheless, the mechanisms underlying this stimulation are poorly understood. Objective: To study the effect of kilohertz-frequency electric fields on neuronal membrane biophysics we developed a reliable experimental method to measure responses of single neurons to kilohertz field stimulation in brain slice preparations. Methods: In the submerged brain slice pyramidal neurons of the CA1 subfield were recorded in the whole-cell configuration before, during and after stimulation with an external electric field at 2kHz, 5kHz or 10 kHz. Results: Reproducible excitatory changes in rheobase and spontaneous firing were elicited during kHz-field application at all stimulating frequencies. The rheobase only decreased and spontaneous firing either was initiated in silent neurons or became more intense in previously spontaneously active neurons. Response thresholds were higher at higher frequencies. Blockade of glutamatergic synaptic transmission did not alter the magnitude of responses. Inhibitory synaptic input was not changed by kilohertz field stimulation. Conclusion: kHz-frequency current applied in brain tissue has an excitatory effect on pyramidal neurons during stimulation. This effect is more prominent and occurs at a lower stimulus intensity at a frequency of 2kHz as compared to 5kHz and 10kHz.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi222-vi222
Author(s):  
Breanna Mann ◽  
Noah Bell ◽  
Denise Dunn ◽  
Scott Floyd ◽  
Shawn Hingtgen ◽  
...  

Abstract Brain cancers remain one of the greatest medical challenges. The lack of experimentally tractable models that recapitulate brain structure/function represents a major impediment. Platforms that enable functional testing in high-fidelity models are urgently needed to accelerate the identification and translation of therapies to improve outcomes for patients suffering from brain cancer. In vitro assays are often too simple and artificial while in vivo studies can be time-intensive and complicated. Our live, organotypic brain slice platform can be used to seed and grow brain cancer cell lines, allowing us to bridge the existing gap in models. These tumors can rapidly establish within the brain slice microenvironment, and morphologic features of the tumor can be seen within a short period of time. The growth, migration, and treatment dynamics of tumors seen on the slices recapitulate what is observed in vivo yet is missed by in vitro models. Additionally, the brain slice platform allows for the dual seeding of different cell lines to simulate characteristics of heterogeneous tumors. Furthermore, live brain slices with embedded tumor can be generated from tumor-bearing mice. This method allows us to quantify tumor burden more effectively and allows for treatment and retreatment of the slices to understand treatment response and resistance that may occur in vivo. This brain slice platform lays the groundwork for a new clinically relevant preclinical model which provides physiologically relevant answers in a short amount of time leading to an acceleration of therapeutic translation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ben A. Chindo ◽  
Melanie-Jayne R. Howes ◽  
Sawsan Abuhamdah ◽  
Musa I. Yakubu ◽  
Godwin I. Ayuba ◽  
...  

Melissa officinalis L. is used in traditional European and Iranian folk medicines to treat a plethora of neurological diseases including epilepsy. We utilized the in vitro and in vivo models of epilepsy to probe the anticonvulsant potentials of essential oil from M. officinalis (MO) to gain insight into the scientific basis for its applications in traditional medicine for the management of convulsive disorders. MO was evaluated for effects on maximal electroshock (MES) and pentylenetetrazole (PTZ) -induced seizures in mice, on 4–aminopyridine (4-AP)-brain slice model of epilepsy and sustained repetitive firing of current clamped neurons; and its ameliorative effects were examined on seizure severity, anxiety, depression, cognitive dysfunction, oxidative stress and neuronal cell loss in PTZ-kindled rats. MO reversibly blocked spontaneous ictal-like discharges in the 4-AP-brain slice model of epilepsy and secondary spikes from sustained repetitive firing, suggesting anticonvulsant effects and voltage-gated sodium channel blockade. MO protected mice from PTZ– and MES–induced seizures and mortality, and ameliorated seizure severity, fear-avoidance, depressive-like behavior, cognitive deficits, oxidative stress and neuronal cell loss in PTZ–kindled rats. The findings warrant further study for the potential use of MO and/or its constituent(s) as adjunctive therapy for epileptic patients.


2021 ◽  
Author(s):  
Yueguang Si ◽  
Yiting Wang

Abstract It describes the flow of whole cell patch-clamp electrophysiology in mice brain slice.


Author(s):  
Lorela Ciraku ◽  
Rebecca A. Moeller ◽  
Emily M. Esquea ◽  
Wiktoria A. Gocal ◽  
Edward J. Hartsough ◽  
...  

2021 ◽  
Vol 23 (Supplement_2) ◽  
pp. ii56-ii57
Author(s):  
C Flüh ◽  
C Nanvuma ◽  
Y Huang ◽  
E Motta ◽  
L Kuhrt ◽  
...  

Abstract BACKGROUND Glioblastoma multiforme is a highly malignant brain tumor with a devastating prognosis. Resection followed by radio-chemotherapy leads to an overall survival of only 15 months. Up to 40% of the tumor mass consist of tumor-associated microglia and macrophages (TAMs). These cells were shown to promote tumor growth and invasiveness in many murine glioma models. The interaction between TAMs and tumor cells is crucial for tumor progression and includes several known pathways. Still, murine glioma models only partially mirror the human tumor microenvironment. Several known genes, which are highly upregulated in human glioma and TAMs are only expressed in human tissue and not in mice. To further investigate some of these genes, we aimed at establishing a humanized ex-vivo brain slice model, in which human TAMs and human glioma cells can be studied in a standardized manner. MATERIAL AND METHODS We used 250 micrometer thick murine brain slices, which were depleted of intrinsic microglia by applying clodoronated liposomes. Next, we inoculated human glioma cells (originating from the cell lines mCherryU87, mCherryU251MG, mCherryLN229 and several patient derived cells lines) with or without human microglia derived from induced pluripotent stem cells (iPSCs). Slices were cultivated for 7 to 14 days. Next, we performed a detailed analysis of microglia morphology (sphericity, cell body volume, process length and branching pattern) and tumor volume. RESULTS Clodronation efficacy was high, depending on duration of treatment and length of cultivation. iPSCs and tumor cells integrated into the slice very well. The presence of tumor cells led to an increased sphericity of iPSC-dervied microglia and to an increased cell body volume. Branching pattern and process length did not differ between both conditions. Tumor volume was significantly larger when iPSC-derived microglia were present. This was found in various glioma cells lines and also in patient derived cells. CONCLUSION The newly established humanized ex-vivo brain slice system was shown to be feasible. The method successfully allows to study the interaction between human TAMs and tumor cells. Microglia foster tumor growth not only in murine glioma models, but also in a human paradigm. The humanized ex-vivo brain slice model therefore is the optimal basis to study the role human-specific genes in TAM-glioma interaction.


Sign in / Sign up

Export Citation Format

Share Document