From epidemiology and neurodevelopment to antineoplasticity. Medroxyprogesterone reduces human glial tumor growth in vitro and C6 glioma in rat brain in vivo

2018 ◽  
Vol 173 ◽  
pp. 20-30 ◽  
Author(s):  
Meric A. Altinoz ◽  
Josephine Nalbantoglu ◽  
Aysel Ozpinar ◽  
M. Emin Ozcan ◽  
Rolando F. Del Maestro ◽  
...  
Keyword(s):  
2009 ◽  
Vol 297 (5) ◽  
pp. E1078-E1088 ◽  
Author(s):  
Federica Barbieri ◽  
Alessandra Pattarozzi ◽  
Monica Gatti ◽  
Cinzia Aiello ◽  
Ana Quintero ◽  
...  

Somatostatin receptors (SSTR1–5) mediate antiproliferative effects. In C6 rat glioma cells, somatostatin is cytostatic in vitro via phosphotyrosine phosphatase-dependent inhibition of ERK1/2 activity mediated by SSTR1, -2, and -5. Here we analyzed the effects of SSTR activation on C6 glioma growth in vivo and the intracellular mechanisms involved, comparing somatostatin effects with selective agonists for SSTR1, -2, and -5 (BIM-23745, BIM-23120, BIM-23206) or receptor biselective compounds (SSTR1 and -2, BIM-23704; and SSTR2 and -5, BIM-23190). Nude mice subcutaneously xenografted with C6 cells were treated with somatostatin, SSTR agonists (50 μg, twice/day), or vehicle. Tumor growth was evaluated every 3 days for 19 days. The intracellular pathways responsible of SSTR effects in vivo were evaluated measuring Ki-67, phospho-ERK1/2, and p27kip1 expression by immunohistochemistry in sections from explanted tumors. Somatostatin and SSTR1, -2, and -5 agonists strongly inhibited in vivo C6 tumor growth, intratumoral neovessel formation, Ki-67 expression, and ERK1/2 phosphorylation and induced upregulation of p27Kip1, whereas only a modest activation of caspase-3 was observed. Somatostatin (acting on SSTR1, -2, and -5) displayed the highest efficacy; SSTR5 selective agonist showed a stronger effect than SSTR1 agonist, and SSTR2 agonist was less effective. On the other hand, SSTR1 and -2 agonists maximally reduced tumor neovascularization. The combined activation of SSTR1 and -2 showed a synergistic activity, reaching a higher efficacy than BIM-23206, whereas the simultaneous activation of SSTR2 and -5 resulted in a response resembling SSTR5 effects. Thus the simultaneous activation of different SSTRs inhibits glioma cell proliferation in vivo through both direct cytotostatic and antiangiogenic effects.


2016 ◽  
Vol 18 (suppl_4) ◽  
pp. iv40-iv40
Author(s):  
M. A. Altinoz ◽  
F. H. Bolukbasi ◽  
J. Nalbantoglu ◽  
R. F. Del Maestro ◽  
I. Elmaci

2019 ◽  
Vol 2 (4) ◽  
pp. 83-98 ◽  
Author(s):  
André De Lima Mota ◽  
Bruna Vitorasso Jardim-Perassi ◽  
Tialfi Bergamin De Castro ◽  
Jucimara Colombo ◽  
Nathália Martins Sonehara ◽  
...  

Breast cancer is the most common cancer among women and has a high mortality rate. Adverse conditions in the tumor microenvironment, such as hypoxia and acidosis, may exert selective pressure on the tumor, selecting subpopulations of tumor cells with advantages for survival in this environment. In this context, therapeutic agents that can modify these conditions, and consequently the intratumoral heterogeneity need to be explored. Melatonin, in addition to its physiological effects, exhibits important anti-tumor actions which may associate with modification of hypoxia and Warburg effect. In this study, we have evaluated the action of melatonin on tumor growth and tumor metabolism by different markers of hypoxia and glucose metabolism (HIF-1α, glucose transporters GLUT1 and GLUT3 and carbonic anhydrases CA-IX and CA-XII) in triple negative breast cancer model. In an in vitro study, gene and protein expressions of these markers were evaluated by quantitative real-time PCR and immunocytochemistry, respectively. The effects of melatonin were also tested in a MDA-MB-231 xenograft animal model. Results showed that melatonin treatment reduced the viability of MDA-MB-231 cells and tumor growth in Balb/c nude mice (p <0.05). The treatment significantly decreased HIF-1α gene and protein expression concomitantly with the expression of GLUT1, GLUT3, CA-IX and CA-XII (p <0.05). These results strongly suggest that melatonin down-regulates HIF-1α expression and regulates glucose metabolism in breast tumor cells, therefore, controlling hypoxia and tumor progression. 


Author(s):  
С.В. Калиш ◽  
С.В. Лямина ◽  
А.А. Раецкая ◽  
И.Ю. Малышев

Цель исследования. Репрограммирование М1 фенотипа макрофагов с ингибированными факторами транскрипции М2 фенотипа STAT3, STAТ6 и SMAD и оценка их влияния на развитие карциномы Эрлиха (КЭ) in vitro и in vivo. Методика. Рост опухоли иницировали in vitro путем добавления клеток КЭ в среду культивирования RPMI-1640 и in vivo путем внутрибрюшинной инъекции клеток КЭ мышам. Результаты. Установлено, что M1макрофаги и in vitro, и in vivo оказывают выраженный противоопухолевый эффект, который превосходит антиопухолевые эффекты М1, M1, M1 макрофагов и цисплатина. Заключение. М1 макрофаги с ингибированными STAT3, STAT6 и/или SMAD3 эффективно ограничивают рост опухоли. Полученные данные обосновывают разработку новой технологии противоопухолевой клеточной терапии. Objective. Reprogramming of M1 macrophage phenotype with inhibited M2 phenotype transcription factors, such as STAT3, STAT6 and SMAD and assess their impact on the development of Ehrlich carcinoma (EC) in vitro and in vivo . Methods. Tumor growth in vitro was initiated by addition of EC cells in RPMI-1640 culture medium and in vivo by intraperitoneal of EC cell injection into mice. Results. It was found that M1 macrophages have a pronounced anti-tumor effect in vitro , and in vivo , which was greater than anti-tumor effects of M1, M1, M1 macrophages and cisplatin. Conclusion. M1 macrophages with inhibited STAT3, STAT6 and/or SMAD3 effectively restrict tumor growth. The findings justify the development of new anti-tumor cell therapy technology.


2010 ◽  
Vol 113 (Special_Supplement) ◽  
pp. 228-235 ◽  
Author(s):  
Qiang Jia ◽  
Yanhe Li ◽  
Desheng Xu ◽  
Zhenjiang Li ◽  
Zhiyuan Zhang ◽  
...  

Object The authors sought to evaluate modification of the radiation response of C6 glioma cells in vitro and in vivo by inhibiting the expression of Ku70. To do so they investigated the effect of gene transfer involving a recombinant replication-defective adenovirus containing Ku70 short hairpin RNA (Ad-Ku70shRNA) combined with Gamma Knife treatment (GKT). Methods First, Ad-Ku70shRNA was transfected into C6 glioma cells and the expression of Ku70 was measured using Western blot analysis. In vitro, phenotypical changes in C6 cells, including proliferation, cell cycle modification, invasion ability, and apoptosis were evaluated using the MTT (3′(4,5-dimethylthiazol-2-yl)2,5-diphenyltetrazolium bromide) assay, Western blot analysis, and cell flow cytometry. In vivo, parental C6 cells transfected with Ad-Ku70shRNA were implanted stereotactically into the right caudate nucleus in Sprague-Dawley rats. After GKS, apoptosis was analyzed using the TUNEL (terminal deoxynucleotidyl transferase–mediated deoxyuridine triphosphate nick-end labeling) method. The inhibitory effects on growth and invasion that were induced by expression of proliferating cell nuclear antigen and matrix metalloproteinase–9 were determined using immunohistochemical analyses. Results The expression of Ku70 was clearly inhibited in C6 cells after transfection with Ad-Ku70shRNA. In vitro following transfection, the C6 cells showed improved responses to GKT, including suppression of proliferation and invasion as well as an increased apoptosis index. In vivo following transfection of Ad-Ku70shRNA, the therapeutic efficacy of GKT in rats with C6 gliomas was greatly enhanced and survival times in these animals were prolonged. Conclusions Our data support the potential for downregulation of Ku70 expression in enhancing the radiosensitivity of gliomas. The findings of our study indicate that targeted gene therapy–mediated inactivation of Ku70 may represent a promising strategy in improving the radioresponsiveness of gliomas to GKT.


2012 ◽  
Vol 38 (12) ◽  
pp. 1121-1131
Author(s):  
Xiao-Hui WANG ◽  
Ya-Min ZHENG ◽  
Ye-Qing CUI ◽  
Shuang LIU ◽  
Hai-Chen SUN ◽  
...  

2019 ◽  
Vol 65 (5) ◽  
pp. 760-765
Author(s):  
Margarita Tyndyk ◽  
Irina Popovich ◽  
A. Malek ◽  
R. Samsonov ◽  
N. Germanov ◽  
...  

The paper presents the results of the research on the antitumor activity of a new drug - atomic clusters of silver (ACS), the colloidal solution of nanostructured silver bisilicate Ag6Si2O7 with particles size of 1-2 nm in deionized water. In vitro studies to evaluate the effect of various ACS concentrations in human tumor cells cultures (breast cancer, colon carcinoma and prostate cancer) were conducted. The highest antitumor activity of ACS was observed in dilutions from 2.7 mg/l to 5.1 mg/l, resulting in the death of tumor cells in all studied cell cultures. In vivo experiments on transplanted Ehrlich carcinoma model in mice consuming 0.75 mg/kg ACS with drinking water revealed significant inhibition of tumor growth since the 14th day of experiment (maximally by 52% on the 28th day, p < 0.05) in comparison with control. Subcutaneous injections of 2.5 mg/kg ACS inhibited Ehrlich's tumor growth on the 7th and 10th days of the experiment (p < 0.05) as compared to control.


Oncogene ◽  
2021 ◽  
Author(s):  
Jiuna Zhang ◽  
Xiaoyu Jiang ◽  
Jie Yin ◽  
Shiying Dou ◽  
Xiaoli Xie ◽  
...  

AbstractRING finger proteins (RNFs) play a critical role in cancer initiation and progression. RNF141 is a member of RNFs family; however, its clinical significance, roles, and mechanism in colorectal cancer (CRC) remain poorly understood. Here, we examined the expression of RNF141 in 64 pairs of CRC and adjacent normal tissues by real-time PCR, Western blot, and immunohistochemical analysis. We found that there was more expression of RNF141 in CRC tissue compared with its adjacent normal tissue and high RNF141 expression associated with T stage. In vivo and in vitro functional experiments were conducted and revealed the oncogenic role of RNF141 in CRC. RNF141 knockdown suppressed proliferation, arrested the cell cycle in the G1 phase, inhibited migration, invasion and HUVEC tube formation but promoted apoptosis, whereas RNF141 overexpression exerted the opposite effects in CRC cells. The subcutaneous xenograft models showed that RNF141 knockdown reduced tumor growth, but its overexpression promoted tumor growth. Mechanistically, liquid chromatography-tandem mass spectrometry indicated RNF141 interacted with KRAS, which was confirmed by Co-immunoprecipitation, Immunofluorescence assay. Further analysis with bimolecular fluorescence complementation (BiFC) and Glutathione-S-transferase (GST) pull-down assays showed that RNF141 could directly bind to KRAS. Importantly, the upregulation of RNF141 increased GTP-bound KRAS, but its knockdown resulted in a reduction accordingly. Next, we demonstrated that RNF141 induced KRAS activation via increasing its enrichment on the plasma membrane not altering total KRAS expression, which was facilitated by the interaction with LYPLA1. Moreover, KRAS silencing partially abolished the effect of RNF141 on cell proliferation and apoptosis. In addition, our findings presented that RNF141 functioned as an oncogene by upregulating KRAS activity in a manner of promoting KRAS enrichment on the plasma membrane in CRC.


Sign in / Sign up

Export Citation Format

Share Document