On computing the distribution function of the sum of independent random variables

2001 ◽  
Vol 28 (5) ◽  
pp. 473-483 ◽  
Author(s):  
Mani K. Agrawal ◽  
Salah E. Elmaghraby
1984 ◽  
Vol 21 (1) ◽  
pp. 98-107 ◽  
Author(s):  
Minoru Yoshida

Before some random moment θ, independent identically distributed random variables x1, · ··, xθ–1 with common distribution function μ (dx) appear consecutively. After the moment θ, independent random variables xθ, xθ+1, · ·· have another common distribution function f (x)μ (dx). Our information about θ can be constructed only by successively observed values of the x's.In this paper we find an optimal stopping policy by which we can maximize the probability that the quantity associated with the stopping time is the largest of all θ + m – 1 quantities for a given integer m.


1975 ◽  
Vol 12 (3) ◽  
pp. 435-446 ◽  
Author(s):  
Valerie Isham

A class of point processes is considered, in which the locations of the points are independent random variables. In particular some properties of the process in which the distribution function of the position of the nth event is the n-fold convolution of some distribution function F, are investigated. It is shown that, under fairly general conditions, the process remote from the origin will be asymptotically Poisson. It is also shown that the variance of the number of events in the interval (0, t] is . Some generalisations are discussed.


Author(s):  
Olesya Martyniuk ◽  
Stepan Popina ◽  
Serhii Martyniuk

Introduction. Mathematical modeling of economic processes is necessary for the unambiguous formulation and solution of the problem. In the economic sphere this is the most important aspect of the activity of any enterprise, for which economic-mathematical modeling is the tool that allows to make adequate decisions. However, economic indicators that are factors of a model are usually random variables. An economic-mathematical model is proposed for calculating the probability distribution function of the result of economic activity on the basis of the known dependence of this result on factors influencing it and density of probability distribution of these factors. Methods. The formula was used to calculate the random variable probability distribution function, which is a function of other independent random variables. The method of estimation of basic numerical characteristics of the investigated functions of random variables is proposed: mathematical expectation that in the probabilistic sense is the average value of the result of functioning of the economic structure, as well as its variance. The upper bound of the variation of the effective feature is indicated. Results. The cases of linear and power functions of two independent variables are investigated. Different cases of two-dimensional domain of possible values of indicators, which are continuous random variables, are considered. The application of research results to production functions is considered. Examples of estimating the probability distribution function of a random variable are offered. Conclusions. The research results allow in the probabilistic sense to estimate the result of the economic structure activity on the basis of the probabilistic distributions of the values of the dependent variables. The prospect of further research is to apply indirect control over economic performance based on economic and mathematical modeling.


1963 ◽  
Vol 59 (2) ◽  
pp. 411-416
Author(s):  
G. De Barra ◽  
N. B. Slater

Let Xν, ν= l, 2, …, n be n independent random variables in k-dimensional (real) Euclidean space Rk, which have, for each ν, finite fourth moments β4ii = l,…, k. In the case when the Xν are identically distributed, have zero means, and unit covariance matrices, Esseen(1) has discussed the rate of convergence of the distribution of the sumsIf denotes the projection of on the ith coordinate axis, Esseen proves that ifand ψ(a) denotes the corresponding normal (radial) distribution function of the same first and second moments as μn(a), thenwhere and C is a constant depending only on k. (C, without a subscript, will denote everywhere a constant depending only on k.)


1995 ◽  
Vol 118 (2) ◽  
pp. 375-382 ◽  
Author(s):  
Sándor Csörgő ◽  
László Viharos

Let X, X1, X2, …, be independent random variables with a common distribution function F(x) = P {X ≤ x}, x∈ℝ, and for each n∈ℕ, let X1, n ≤ … ≤ Xn, n denote the order statistics pertaining to the sample X1, …, Xn. We assume that 1–F(x) = x−1/cl(x), 0 < x < ∞, where l is some function slowly varying at infinity and c > 0 is any fixed number. The class of all such distribution functions will be denoted by .


1991 ◽  
Vol 4 (1) ◽  
pp. 1-27 ◽  
Author(s):  
Lajos Takács

Let Fn(x) and Gn(x) be the empirical distribution functions of two independent samples, each of size n, in the case where the elements of the samples are independent random variables, each having the same continuous distribution function V(x) over the interval (0,1). Define a statistic θn by θn/n=∫01[Fn(x)−Gn(x)]dV(x)−min0≤x≤1[Fn(x)−Gn(x)]. In this paper the limits of E{(θn/2n)r}(r=0,1,2,…) and P{θn/2n≤x} are determined for n→∞. The problem of finding the asymptotic behavior of the moments and the distribution of θn as n→∞ has arisen in a study of the fluctuations of the inventory of locomotives in a randomly chosen railway depot.


Sign in / Sign up

Export Citation Format

Share Document