scholarly journals Probabalistic modelling of the results of economic activity as a function of random values

Author(s):  
Olesya Martyniuk ◽  
Stepan Popina ◽  
Serhii Martyniuk

Introduction. Mathematical modeling of economic processes is necessary for the unambiguous formulation and solution of the problem. In the economic sphere this is the most important aspect of the activity of any enterprise, for which economic-mathematical modeling is the tool that allows to make adequate decisions. However, economic indicators that are factors of a model are usually random variables. An economic-mathematical model is proposed for calculating the probability distribution function of the result of economic activity on the basis of the known dependence of this result on factors influencing it and density of probability distribution of these factors. Methods. The formula was used to calculate the random variable probability distribution function, which is a function of other independent random variables. The method of estimation of basic numerical characteristics of the investigated functions of random variables is proposed: mathematical expectation that in the probabilistic sense is the average value of the result of functioning of the economic structure, as well as its variance. The upper bound of the variation of the effective feature is indicated. Results. The cases of linear and power functions of two independent variables are investigated. Different cases of two-dimensional domain of possible values of indicators, which are continuous random variables, are considered. The application of research results to production functions is considered. Examples of estimating the probability distribution function of a random variable are offered. Conclusions. The research results allow in the probabilistic sense to estimate the result of the economic structure activity on the basis of the probabilistic distributions of the values of the dependent variables. The prospect of further research is to apply indirect control over economic performance based on economic and mathematical modeling.

1997 ◽  
Vol 82 (3) ◽  
pp. 968-976 ◽  
Author(s):  
Hiroko Kitaoka ◽  
Béla Suki

Kitaoka, Hiroko, and Béla Suki. Branching design of the bronchial tree based on a diameter-flow relationship. J. Appl. Physiol. 82(3): 968–976, 1997.—We propose a method for designing the bronchial tree where the branching process is stochastic and the diameter ( d) of a branch is determined by its flow rate (Q). We use two principles: the continuum equation for flow division and a power-law relationship between d and Q, given by Q ∼ d n, where n is the diameter exponent. The value of n has been suggested to be ∼3. We assume that flow is divided iteratively with a random variable for the flow-division ratio, defined as the ratio of flow in the branch to that in its parent branch. We show that the cumulative probability distribution function of Q, P(>Q) is proportional to Q−1. We analyzed prior morphometric airway data (O. G. Raabe, H. C. Yeh, H. M. Schum, and R. F. Phalen, Report No. LF-53, 1976) and found that the cumulative probability distribution function of diameters, P(> d), is proportional to d −n, which supports the validity of Q ∼ d n since P(>Q) ∼ Q−1. This allowed us to assign diameters to the segments of the flow-branching pattern. We modeled the bronchial trees of four mammals and found that their statistical features were in good accordance with the morphometric data. We conclude that our design method is appropriate for robust generation of bronchial tree models.


1993 ◽  
Vol 16 (1) ◽  
pp. 155-164
Author(s):  
Piotor Mikusiński ◽  
Morgan Phillips ◽  
Howard Sherwood ◽  
Michael D. Taylor

LetF1,…,FNbe1-dimensional probability distribution functions andCbe anN-copula. Define anN-dimensional probability distribution functionGbyG(x1,…,xN)=C(F1(x1),…,FN(xN)). Letν, be the probability measure induced onℝNbyGandμbe the probability measure induced on[0,1]NbyC. We construct a certain transformationΦof subsets ofℝNto subsets of[0,1]Nwhich we call the Fréchet transform and prove that it is measure-preserving. It is intended that this transform be used as a tool to study the types of dependence which can exist between pairs orN-tuples of random variables, but no applications are presented in this paper.


2010 ◽  
Vol 24 (09) ◽  
pp. 825-831 ◽  
Author(s):  
CONGJIE OU ◽  
AZIZ EL KAABOUCHI ◽  
JINCAN CHEN ◽  
ALAIN LE MÉHAUTÉ ◽  
ALEXANDRE QIUPING WANG

For a random variable x we can define a variational relationship with practical physical meaning as [Formula: see text], where I is the uncertainty measure. With the help of a generalized definition of expectation, [Formula: see text], we can find the concrete forms of the maximizable entropies for any given probability distribution function, where g({pi}) may have different forms for different statistical methods which include the extensive and non-extensive statistics. Moreover, it is pointed out that this generalized uncertainty measure is valid not only for thermodynamic systems but also for non-thermodynamic systems.


1970 ◽  
Vol 7 (01) ◽  
pp. 89-98
Author(s):  
John Lamperti

In the first part of this paper, we will consider a class of Markov chains on the non-negative integers which resemble the Galton-Watson branching process, but with one major difference. If there are k individuals in the nth “generation”, and are independent random variables representing their respective numbers of offspring, then the (n + 1)th generation will contain max individuals rather than as in the branching case. Equivalently, the transition matrices Pij of the chains we will study are to be of the form where F(.) is the probability distribution function of a non-negative, integervalued random variable. The right-hand side of (1) is thus the probability that the maximum of i independent random variables distributed by F has the value j. Such a chain will be called a “maximal branching process”.


2010 ◽  
Vol 82 (2) ◽  
pp. 513-520 ◽  
Author(s):  
Tibor k. Pogány ◽  
Ram k. Saxena

The five parameter gamma-Weibull distribution has been introduced by Leipnik and Pearce (2004). Nadarajah and Kotz (2007) have simplified it into four parameter form, using hypergeometric functions in some special cases. We show that the probability distribution function, all moments of positive order and the characteristic function of gamma-Weibull distribution of a random variable can be explicitely expressed in terms of the incomplete confluent Fox-Wright Psi-function, which is recently introduced by Srivastava and Pogány (2007). In the same time, we generalize certain results by Nadarajah and Kotz that follow as special cases of our findings.


1970 ◽  
Vol 7 (1) ◽  
pp. 89-98 ◽  
Author(s):  
John Lamperti

In the first part of this paper, we will consider a class of Markov chains on the non-negative integers which resemble the Galton-Watson branching process, but with one major difference. If there are k individuals in the nth “generation”, and are independent random variables representing their respective numbers of offspring, then the (n + 1)th generation will contain max individuals rather than as in the branching case. Equivalently, the transition matrices Pij of the chains we will study are to be of the form where F(.) is the probability distribution function of a non-negative, integervalued random variable. The right-hand side of (1) is thus the probability that the maximum of i independent random variables distributed by F has the value j. Such a chain will be called a “maximal branching process”.


2020 ◽  
pp. 168-173
Author(s):  
Аалиева Бурул

Аннотация: Бөлүштүрүү функциясын, үзгүлтүксүз кокус чоңдуктардын ыктымалдуулуктарын бѳлүштүрүүнүн жиктелиш функциясы (ыктымалдуулуктун тыгыздыгы), ыктымалдуулуктарды бир калыпта бѳлуштүрүү законун аныктоо. Бөлүштүрүү функциясынын касиеттерин окутуу, далилдөө. X кокус чоңдугунун кабыл алууга мүмкүн болгон маанилери (a,b) интервалында жаткандыгынын ыктымалдуулугу бөлүштүрүү функциясынын өсүндүсүнө барабар. Түйүндүү сѳздѳр: Бөлүштурүү функциясы, үзгүлтүксүз кокус чоңдуктардын ыктымалдуулуктары, дискреттик кокус чоңдук, бөлүштүрүүнүн интегралдык функциясы, баштапкы функция. Аннотация: Определять вид непрерывной случайной величины, находить вероятность попадания случайной величины в заданный интервал по заданной функции распределения, уметь находить плотность распределения и равномерное распределения. Еще одно отличие характеристики случайных величин непрерывного действия-включение функции классификации распределения вероятностей, обнаружение первого производного функции последовательности. Следовательно, характеристика распределения вероятностей дискретных случайных величин. Свойства функции распределения обучения и доказательства. Х может быть, чтобы принять параметры диапазона значений (а, б), что функция распределения вероятностей равна приращению. Ключевые слова: Функция распределения, вероятность непрерывной случайной величины, дискретная случайная величина, интегральная функция распределения, первообразная. Annotation: Determine the type of random variable, find the probability of a random variable falling into a given interval by a given distribution function, be able to find the distribution density and uniform distribution. Properties of learning distribution function and evidence. X maybe to take the parameters of the range of values (a, b), that the probability distribution function is equal to the increment. Another difference in the characterization of continuous random variables is the inclusion of the classification function of the probability distribution, the detection of the first derivative of the sequence function. Hence, the characteristic of the probability distribution of discrete random variables Non-decreasing functions, ∫ _ (- ∞) ^ ∞▒ 〖P (x) ax = 1〗. In the case of an individual, if the values of a random variable (a, b) are located within ∫_a ^ b▒ 〖P (x) ax = 1〗 Keywords: Distribution function, probability of continuous random variable, discrete random variable, integral distribution function, antiderivative. DOI: 10.35254/bhu.2019.50.1 ВЕСТНИК БИШКЕКСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА. No4(50) 2019 169 Аннотация: Бөлүштүрүү функциясын, үзгүлтүксүз кокус чоңдуктардын ыктымалдуулуктарын бѳлүштүрүүнүн жиктелиш функциясы (ыктымалдуулуктун тыгыздыгы), ыктымалдуулуктарды бир калыпта бѳлуштүрүү законун аныктоо. Бөлүштүрүү функциясынын касиеттерин окутуу, далилдөө. X кокус чоңдугунун кабыл алууга мүмкүн болгон маанилери (a,b) интервалында жаткандыгынын ыктымалдуулугу бөлүштүрүү функциясынын өсүндүсүнө барабар. X кокус чондугу PP(xx < xx1) ыктымалдуулукта x ден кичине маанилерди кабыл алат; X кокус чондугу xx1 ≤ xx < xx2барабарсыздыктын ыктымалдуулугу PP(xx1 ≤ xx < xx2) түрүндө канааттандырат. Үзгүлтүксүз кокус чоңдуктарды мүнөздөөнүн дагы бир башкача жолу ыктымалдуулукту бөлүштүрүүнүн жиктелиш функциясын киргизүү, тутамдык функциясынын биринчи туундусун табуу. Демек,тутамдык функция жиктелиш функциясынын баштапкы функциясы болорун, дискреттик кокус чондуктардын ыктымалдуулуктарынын бөлүштүрүүсүн мунөздөө. Жиктелиш функциясы кемибөөчү функция, ∫ ff(xx)dddd = 1 ∞ −∞ . Жекече учурда, эгерде кокус чоңдуктардын мүмкүн болгон маанилери (a,b) аралыгында жайгашса, анда � ff(xx)dddd = 1 bb aa Түйүндүү сѳздѳр: Бөлүштурүү функциясы, үзгүлтүксүз кокус чоңдуктардын ыктымалдуулуктары, дискреттик кокус чоңдук, бөлүштүрүүнүн интегралдык функциясы, баштапкы функция. Аннотация: Определять вид непрерывной случайной величины, находить вероятность попадания случайной величины в заданный интервал по заданной функции распределения, уметь находить плотность распределения и равномерное распределения. Еще одно отличие характеристики случайных величин непрерывного действия-включение функции классификации распределения вероятностей, обнаружение первого производного функции последовательности. Следовательно, характеристика распределения вероятностей дискретных случайных величин. Ключевые слова: Функция распределения, вероятность непрерывной случайной величины, дискретная случайная величина, интегральная функция распределения, первообразная. Annotation: Determine the type of random variable, find the probability of a random variable falling into a given interval by a given distribution function, be able to find the distribution density and uniform distribution. Properties of learning distribution function and evidence. X maybe to take the parameters of the range of values (a, b), that the probability distribution function is equal to the increment. Another difference in the characterization of continuous random variables is the inclusion of the classification function of the probability distribution, the detection of the first derivative of the sequence function. Keywords: Distribution function, probability of continuous random variable, discrete random variable, integral distribution function, antiderivative.


Author(s):  
Munteanu Bogdan Gheorghe

Based on the Weibull-G Power probability distribution family, we have proposed a new family of probability distributions, named by us the Max Weibull-G power series distributions, which may be applied in order to solve some reliability problems. This implies the fact that the Max Weibull-G power series is the distribution of a random variable max (X1 ,X2 ,...XN) where X1 ,X2 ,... are Weibull-G distributed independent random variables and N is a natural random variable the distribution of which belongs to the family of power series distribution. The main characteristics and properties of this distribution are analyzed.


Sign in / Sign up

Export Citation Format

Share Document