Intracellular recordings of pontine medial gigantocellular tegmental field neurons in the naturally sleeping cat: behavioral state-related activity and soma size difference in order of recruitment

Neuroscience ◽  
2002 ◽  
Vol 114 (1) ◽  
pp. 23-37 ◽  
Author(s):  
K Ito ◽  
M Yanagihara ◽  
H Imon ◽  
L Dauphin ◽  
R.W McCarley
2020 ◽  
Author(s):  
Ruidong Chen ◽  
Vikram Gadagkar ◽  
Andrea C. Roeser ◽  
Pavel A. Puzerey ◽  
Jesse H. Goldberg

AbstractMovement-related neuronal discharge in ventral tegmental area (VTA) and ventral pallidum (VP) is inconsistently observed across studies. One possibility is that some neurons are movement-related and others are not. Another possibility is that the precise behavioral conditions matter - that a single neuron can be movement related under certain behavioral states but not others. We recorded single VTA and VP neurons in birds transitioning between singing and non-singing states, while monitoring body movement with microdrive-mounted accelerometers. Many VP and VTA neurons exhibited body movement-locked activity exclusively when the bird was not singing. During singing, VP and VTA neurons could switch off their tuning to body movement and become instead precisely time-locked to specific song syllables. These changes in neuronal tuning occurred rapidly at state boundaries. Our findings show that movement-related activity in limbic circuits can be gated by behavioral context.


1988 ◽  
Vol 1 (3) ◽  
pp. 263-273 ◽  
Author(s):  
Thomas E. Frumkes ◽  
Thor Eysteinsson

AbstractThe response to spatially focal flicker is enhanced by dim, spatially diffuse, rod-stimulating backgrounds. This effect is called suppressive rod-cone interaction (SRCI) as it reflects a tonic, suppressive influence of dark-adapted rods upon cone pathways which is removed by selective rod-light adaptation. SRCI is observed in amphibian retina with intracellular recordings from most cone-driven cells including the cones themselves, and is most obvious using stimuli flickering at frequencies too rapid for rods to follow. SRCI is blocked by glutamate analogs which selectively block the photic response of horizontal cells (HCs). In the presence of these agents, flicker responses from bipolar cells and cones are enhanced to levels normally seen only with selective rod-light adaptation. In the HCs themselves, SRCI is similarly blocked by lead chloride which blocks rod-, but not cone-related activity.In amphibian and cat HCs and in human observers, SRCI is limited by a space constant of very similar value (between 100 and 150 μm). We suggest that SRCI in all three species is mediated by HCs: in amphibians, SRCI must at least partially reflect rod-modulation of HC feedback onto cones.


Author(s):  
Michele Iovino ◽  
Tullio Messana ◽  
Giovanni De Pergola ◽  
Emanuela Iovino ◽  
Edoardo Guastamacchia ◽  
...  

Background and Objective: The sleep-wake cycle is characterized by a circadian rhythm involving neurotransmitters and neurohormones that are released from brainstem nuclei and hypothalamus. The aim of this review is to analyze the role played by central neural pathways, neurotransmitters and neurohormones in the regulation of vigilance states.Method:We analyzed the literature identifying relevant articles dealing with central neural pathways, neurotransmitters and neurohormones involved in the control of wakefulness and sleep.Results:The reticular activating system is the key center in the control of the states of wakefulness and sleep via alertness and hypnogenic centers. Neurotransmitters and neurohormones interplay during the dark-light cycle in order to maintain a normal plasmatic concentration of ions, proteins and peripheral hormones, and behavioral state control.Conclusion:An updated description of pathways, neurotransmitters and neurohormones involved in the regulation of vigilance states has been depicted.


Sign in / Sign up

Export Citation Format

Share Document