Localization and regulation of the delta-opioid receptor in dorsal root ganglia and spinal cord of the rat and monkey: evidence for association with the membrane of large dense-core vesicles

Neuroscience ◽  
1997 ◽  
Vol 82 (4) ◽  
pp. 1225-1242 ◽  
Author(s):  
X Zhang ◽  
L Bao ◽  
U Arvidsson ◽  
R Elde ◽  
T Hökfelt
1994 ◽  
Vol 168 (1-2) ◽  
pp. 97-100 ◽  
Author(s):  
Keiko Maekawa ◽  
Masabumi Minami ◽  
Kazuki Yabuuchi ◽  
Takashi Toya ◽  
Yoshikazu Katao ◽  
...  

2012 ◽  
Vol 117 (4) ◽  
pp. 847-856 ◽  
Author(s):  
Masami Suzuki ◽  
Minoru Narita ◽  
Minami Hasegawa ◽  
Sadayoshi Furuta ◽  
Tomoyuki Kawamata ◽  
...  

Background Patients with peritoneal carcinomatosis often report abdominal pain, which is relatively refractory to morphine. It has been considered that a new animal model is required to investigate the mechanism of abdominal pain for the development of optimal treatments for this type of pain. Methods To prepare a peritoneal carcinomatosis model, highly peritoneal-seeding gastric cancer cells, 60As6, were implanted into the abdominal cavity. The nociceptive modality for pain-related behavior was assessed in terms of withdrawal behavior in response to mechanical stimuli and hunching behavior. Tissue samples from mouse dorsal root ganglia and spinal cord were subject to immunohistochemistry and real-time reverse transcription polymerase chain reaction. Results Mice with peritoneal dissemination showed significant hypersensitivity of the abdomen to mechanical stimulation and spontaneous visceral pain-related behavior. There was a significant increase in c-Fos-positive cells in the spinal cord in tumor-bearing mice. Those mice exhibited a remarkable increase in substance P-positive neurons in the dorsal root ganglia (control vs. tumor, 15.4 ± 1.1 vs. 24.2 ± 3.6, P < 0.05, n = 3). A significant decreases in μ-opioid receptor expression mainly in substance P-positive neurons was observed in tumor-bearing mice (69.3 ± 4.9 vs. 38.7 ± 0.9, P < 0.05, n = 3), and a relatively higher dose of morphine was required to significantly reverse the abdominal hypersensitivity. Conclusion Both the up-regulation of substance P and down-regulation of μ-opioid receptor seen in the dorsal root ganglia may be, at least in part, responsible for the abdominal pain-like state associated with peritoneal carcinomatosis.


Author(s):  
J. Quatacker ◽  
W. De Potter

Mucopolysaccharides have been demonstrated biochemically in catecholamine-containing subcellular particles in different rat, cat and ox tissues. As catecholamine-containing granules seem to arise from the Golgi apparatus and some also from the axoplasmic reticulum we examined wether carbohydrate macromolecules could be detected in the small and large dense core vesicles and in structures related to them. To this purpose superior cervical ganglia and irises from rabbit and cat and coeliac ganglia and their axons from dog were subjected to the chromaffin reaction to show the distribution of catecholamine-containing granules. Some material was also embedded in glycolmethacrylate (GMA) and stained with phosphotungstic acid (PTA) at low pH for the detection of carbohydrate macromolecules.The chromaffin reaction in the perikarya reveals mainly large dense core vesicles, but in the axon hillock, the axons and the terminals, the small dense core vesicles are more prominent. In the axons the small granules are sometimes seen inside a reticular network (fig. 1).


Author(s):  
Irene Riquelme ◽  
Miguel Angel Reina ◽  
André P. Boezaart ◽  
Francisco Reina ◽  
Virginia García-García ◽  
...  

Neuroscience ◽  
1983 ◽  
Vol 10 (1) ◽  
pp. 41-55 ◽  
Author(s):  
Y. Charnay ◽  
C. Paulin ◽  
J.-A. Chayvialle ◽  
P.M. Dubois

1989 ◽  
Vol 86 (19) ◽  
pp. 7634-7638 ◽  
Author(s):  
A. Giaid ◽  
S. J. Gibson ◽  
B. N. Ibrahim ◽  
S. Legon ◽  
S. R. Bloom ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document