delta opioid receptor
Recently Published Documents


TOTAL DOCUMENTS

552
(FIVE YEARS 72)

H-INDEX

54
(FIVE YEARS 6)

2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Chenran Wang ◽  
Shen Sun ◽  
Jing Jiao ◽  
Xinhua Yu ◽  
Shaoqiang Huang

Abstract Background Delta-opioid receptor is widely expressed in human and rodent hearts, and has been proved to protect cardiomyocytes against ischemia/reperfusion and heart failure. The antagonist of delta-opioid receptor could block the rescue effect of lipid emulsion against local anesthetic cardiotoxicity. However, no evidence is available for the direct effect of delta-opioid-receptor agonists on the cardiotoxicity of local anesthetics. Methods Anesthetized Sprague Dawley rats were divided into five groups. Group NS received 2 ml·kg−1·min−1 normal saline, group LE received 2 ml·kg−1·min−1 30% lipid emulsion and group BW received 0.1, 1.0, or 5.0 mg/kg BW373U86, a delta-opioid-receptor agonist, for 5 min. Then 0.5% bupivacaine was infused intravenously at a rate of 3.0 mg·kg−1·min−1 until asystole. The time of arrhythmia, 50% mean arterial pressure-, 50% heart rate-reduction and asystole were recorded, and the dose of bupivacaine at each time point was calculated. Results All three different doses of BW373U86 did not affect the arrhythmia, 50% mean arterial pressure-reduction, 50% heart rate-reduction and asystole dose of bupivacaine compared with group NS. 30% LE significantly increased the bupivacaine threshold of 50% mean arterial pressure-reduction (17.9 [15.4–20.7] versus 7.2 [5.9–8.7], p = 0.018), 50% heart rate-reduction (18.7 ± 4.2 versus 8.8 ± 1.7, p < 0.001) and asystole (26.5 [21.0–29.1] versus 11.3 [10.7–13.4], p = 0.008) compared with group NS. There was no difference between group LE and group NS in the arrhythmia dose of bupivacaine (9.9 [8.9–11.7] versus 5.6 [4.5–7.0], p = 0.060). Conclusions Our data show that BW373U86 does not affect the cardiotoxicity of bupivacaine compared with NS control in rats. 30% LE pretreatment protects the myocardium against bupivacaine-induced cardiotoxicity.


Author(s):  
Jesse J DiCello ◽  
Simona Elisa Carbone ◽  
Ayame Saito ◽  
Vi Pham ◽  
Agata Szymaszkiewicz ◽  
...  

Background and Purpose: Allosteric modulators (AMs) are molecules that can fine-tune signaling by G protein-coupled receptors (GPCRs). Although they are a promising therapeutic approach for treating a range of disorders, allosteric modulation of GPCRs in the context of the enteric nervous system (ENS) and digestive dysfunction remains largely unexplored. This study examined allosteric modulation of the delta opioid receptor (DOR) in the ENS and assessed the suitability of DOR AMs for the treatment of irritable bowel syndrome (IBS) symptoms using mouse models. Experimental Approach: The effects of the positive allosteric modulator (PAM) of DOR, BMS-986187, on neurogenic contractions of the mouse colon and on DOR internalization in enteric neurons were quantified. The ability of BMS-986187 to influence colonic motility was assessed both in vitro and in vivo. Key Results: BMS-986187 displayed DOR selective PAM-agonist activity and orthosteric agonist probe-dependence in the mouse colon. BMS-986187 augmented the inhibitory effects of DOR agonists on neurogenic contractions and enhanced reflex-evoked DOR internalization in myenteric neurons. BMS-986187 significantly increased DOR endocytosis in myenteric neurons in response to the weakly internalizing agonist ARM390. BMS-986187 reduced the generation of complex motor patterns in the isolated intact colon. BMS-986187 reduced fecal output and diarrhea onset in the novel environment stress and castor oil models of IBS symptoms, respectively. Conclusion and Implications: DOR PAMs enhance DOR-mediated signaling in the ENS and have potential benefit for the treatment of dysmotility. This study provides proof of concept to support the use of GPCR AMs for treatment of gastrointestinal motility disorders.


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6693
Author(s):  
Parthasaradhireddy Tanguturi ◽  
Vibha Pathak ◽  
Sixue Zhang ◽  
Omar Moukha-Chafiq ◽  
Corinne E. Augelli-Szafran ◽  
...  

The delta opioid receptor (DOR) is a crucial receptor system that regulates pain, mood, anxiety, and similar mental states. DOR agonists, such as SNC80, and DOR-neutral antagonists, such as naltrindole, have been developed to investigate the DOR in vivo and as potential therapeutics for pain and depression. However, few inverse agonists and non-competitive/irreversible antagonists have been developed, and none are widely available. This leaves a gap in our pharmacological toolbox and limits our ability to investigate the biology of this receptor. Thus, we designed and synthesized the novel compounds SRI-9342 as an irreversible antagonist and SRI-45127/SRI-45128 as inverse agonists. Then, these compounds were evaluated in vitro for their binding affinity by radioligand binding and functional activity by 35S-GTPγS coupling and cAMP accumulation in cells expressing the human DOR. All three compounds demonstrated high binding affinity and selectivity at the DOR, and all three displayed their hypothesized molecular pharmacology of irreversible antagonism (SRI-9342) or inverse agonism (SRI-45127/SRI-45128). Together, these results demonstrate that we have designed new inverse agonists and irreversible antagonists of the DOR based on a novel chemical scaffold. These new compounds will provide new tools to investigate the biology of the DOR or even new potential therapeutics.


Author(s):  
Toshinori Yoshioka ◽  
Daisuke Yamada ◽  
Keita Iio ◽  
Hiroshi Nagase ◽  
Akiyoshi Saitoh

Background and Purpose Growing evidence demonstrates that the delta opioid receptor (DOP) is an attractive candidate for novel antidepressants with the potential to exhibit rapid action with few adverse effects. However, the underlying detailed functional mechanism remains elusive. Previously, we reported that the selective DOP agonist, KNT-127, produced robust antidepressant-like effects in the mice forced swimming test (FST). Thus, we attempted to identify the cellular mechanism underlying this effect. Experimental Approach Male ICR mice (4–6 weeks) were used in all experiments. The FST was conducted as a screening model for antidepressants. The phosphorylation level of proteins in specific brain regions was quantified using Western blotting. Glutamate/gamma-aminobutyric acid-dependent postsynaptic currents were detected using whole-cell voltage-clamp recordings. Key Results The selective mTOR inhibitor, rapamycin, and the PI3K inhibitor, LY294002, blocked the antidepressant-like effects of KNT-127 in the FST. KNT-127 increased the phosphorylation level of mTOR signal-related proteins, Akt and p70S6K, in the medial prefrontal cortex. The bilateral microinfusion of KNT-127 in the infralimbic cortex decreased immobility in the FST. The frequency of miniature excitatory postsynaptic currents in the infralimbic cortex increased and that of miniature inhibitory postsynaptic currents decreased with the perfusion of KNT-127, which was blocked by pretreatment with rapamycin. Conclusions and Implications KNT-127 displays antidepressant-like actions through the direct facilitation of neuronal excitability in the mice infralimbic cortex, which is implicated in the PI3K-Akt-mTOR-p70S6K signaling pathway. These results could indicate the first steps in elucidating the complete mechanical functions of DOPs as a potential candidate for novel antidepressants.


2021 ◽  
Vol 15 ◽  
Author(s):  
David Reiss ◽  
Hervé Maurin ◽  
Emilie Audouard ◽  
Miriam Martínez-Navarro ◽  
Yaping Xue ◽  
...  

Background: The delta opioid receptor (DOR) contributes to pain control, and a major challenge is the identification of DOR populations that control pain, analgesia, and tolerance. Astrocytes are known as important cells in the pathophysiology of chronic pain, and many studies report an increased prevalence of pain in women. However, the implication of astrocytic DOR in neuropathic pain and analgesia, as well as the influence of sex in this receptor activity, remains unknown.Experimental Approach: We developed a novel conditional knockout (cKO) mouse line wherein DOR is deleted in astrocytes (named GFAP-DOR-KO), and investigated neuropathic mechanical allodynia as well as analgesia and analgesic tolerance in mutant male and female mice. Neuropathic cold allodynia was also characterized in mice of both sexes lacking DOR either in astrocytes or constitutively.Results: Neuropathic mechanical allodynia was similar in GFAP-DOR-KO and floxed DOR control mice, and the DOR agonist SNC80 produced analgesia in mutant mice of both sexes. Interestingly, analgesic tolerance developed in cKO males and was abolished in cKO females. Cold neuropathic allodynia was reduced in mice with decreased DOR in astrocytes. By contrast, cold allodynia was exacerbated in full DOR KO females.Conclusions: These findings show that astrocytic DOR has a prominent role in promoting cold allodynia and analgesic tolerance in females, while overall DOR activity was protective. Altogether this suggests that endogenous- and exogenous-mediated DOR activity in astrocytes worsens neuropathic allodynia while DOR activity in other cells attenuates this form of pain. In conclusion, our results show a sex-specific implication of astrocytic DOR in neuropathic pain and analgesic tolerance. These findings open new avenues for developing tailored DOR-mediated analgesic strategies.


Pain ◽  
2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Attila Keresztes ◽  
Keith Olson ◽  
Paul Nguyen ◽  
Marissa A. Lopez-Pier ◽  
Ryan Hecksel ◽  
...  

2021 ◽  
Vol 35 (S1) ◽  
Author(s):  
Gwendolyn Burgess ◽  
Sajni Amin ◽  
Emily Jutkiewicz

2021 ◽  
Vol 35 (S1) ◽  
Author(s):  
Arryn Blaine ◽  
Sophia Palant ◽  
Jinling Yuan ◽  
Richard Rijn

Sign in / Sign up

Export Citation Format

Share Document