tumor bearing
Recently Published Documents


TOTAL DOCUMENTS

3416
(FIVE YEARS 638)

H-INDEX

81
(FIVE YEARS 9)

2022 ◽  
Author(s):  
Laura Sellmer ◽  
Julia Kovács ◽  
Jens Neumann ◽  
Julia Walter ◽  
Diego Kauffmann-Guerrero ◽  
...  

Aim: To analyze immune cell populations in non-small-cell lung cancer (NSCLC) tumors and matched tumor-bearing and non-tumor-bearing lymph nodes (ntbLNs) to predict prognosis. Patients & methods: 71 patients with long-term disease-free survival and 80 patients with relapse within 3 years were included in this study. We used Cox regression to identify factors associated with overall survival (OS) and progression-free survival (PFS). Results: Sinus histiocytosis and tumor-infiltrating lymphocyte density in the tumor were positively associated with PFS and OS. CD4 expression in N1 (hazard ratio = 0.72; p = 0.02) and N2 (hazard ratio = 0.91; p = 0.04) ntbLNs were positively correlated with OS and PFS, respectively. Discussion: Immunological markers in ntbLNs could be used to predict survival in NSCLC.


2022 ◽  
Vol 12 (1) ◽  
pp. 100
Author(s):  
Rheal A. Towner ◽  
James Hocker ◽  
Nataliya Smith ◽  
Debra Saunders ◽  
James Battiste ◽  
...  

Current therapies for high-grade gliomas, particularly glioblastomas (GBM), do not extend patient survival beyond 16–22 months. OKN-007 (OKlahoma Nitrone 007), which is currently in phase II (multi-institutional) clinical trials for GBM patients, and has demonstrated efficacy in several rodent and human xenograft glioma models, shows some promise as an anti-glioma therapeutic, as it affects most aspects of tumorigenesis (tumor cell proliferation, angiogenesis, migration, and apoptosis). Combined with the chemotherapeutic agent temozolomide (TMZ), OKN-007 is even more effective by affecting chemo-resistant tumor cells. In this study, mass spectrometry (MS) methodology ESI-MS, mass peak analysis (Leave One Out Cross Validation (LOOCV) and tandem MS peptide sequence analyses), and bioinformatics analyses (Ingenuity® Pathway Analysis (IPA®), were used to identify up- or down-regulated proteins in the blood sera of F98 glioma-bearing rats, that were either untreated or treated with OKN-007. Proteins of interest identified by tandem MS-MS that were decreased in sera from tumor-bearing rats that were either OKN-007-treated or untreated included ABCA2, ATP5B, CNTN2, ITGA3, KMT2D, MYCBP2, NOTCH3, and VCAN. Conversely, proteins of interest in tumor-bearing rats that were elevated following OKN-007 treatment included ABCA6, ADAMTS18, VWA8, MACF1, and LAMA5. These findings, in general, support our previous gene analysis, indicating that OKN-007 may be effective against the ECM. These findings also surmise that OKN-007 may be more effective against oligodendrogliomas, other brain tumors such as medulloblastoma, and possibly other types of cancers.


Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 287
Author(s):  
Shuying Li ◽  
Yanjuan Wu ◽  
Xiukun Xue ◽  
Siyuan Liu

The combination of chemotherapy, photothermal therapy (PTT) and photodynamic therapy (PDT) based on a single nanosystem is highly desirable for cancer treatment. In this study, we developed a versatile Pt(IV) prodrug-based nanodrug, PVPt@Cy NPs, to realize synchronous chemotherapy, PDT and PTT and integrate cancer treatment with bioimaging. To construct PVPt@Cy NPs, the amphiphilic Pt(IV)-based polymeric prodrug PVPt was synthesized by a facile one-pot coupling reaction, and then it was used to encapsulate an optotheranostic agent (HOCyOH, Cy) via hydrophobic interaction-induced self-assembly. These NPs would disaggregate under acidic, reductive conditions and NIR irradiation, which are accompanied by photothermal conversion and reactive oxygen species (ROS) generation. Moreover, the PVPt@Cy NPs exhibited an enhanced in vitro anticancer efficiency with 808-nm light irradiation. Furthermore, the PVPt@Cy NPs showed strong NIR fluorescence and photothermal imaging in H22 tumor-bearing mice, allowing the detection of the tumor site and monitoring of the drug biodistribution. Therefore, PVPt@Cy NPs displayed an enormous potential in combined chemo-phototherapy.


2022 ◽  
Vol 12 ◽  
Author(s):  
Leanne De Silva ◽  
Ju-Yen Fu ◽  
Thet Thet Htar ◽  
Wan Hamirul Bahrin Wan Kamal ◽  
Azahari Kasbollah ◽  
...  

The purpose of this work was to study the biodistribution of niosomes in tumor-implanted BALB/c mice using gamma scintigraphy. Niosomes were first formulated and characterized, then radiolabeled with Technetium-99 m (99mTc). The biodistribution of 99mTc-labeled niosomes was evaluated in tumor-bearing mice through intravenous injection and imaged with gamma scintigraphy. The labeled complexes possessed high radiolabeling efficiency (98.08%) and were stable in vitro (>80% after 8 h). Scintigraphic imaging showed negligible accumulation in the stomach and thyroid, indicating minimal leaching of the radiolabel in vivo. Radioactivity was found mainly in the liver, spleen and kidneys. Tumor-to-muscle ratio indicated a higher specificity of the formulation for the tumor area. Overall, the formulated niosomes are stable both in vitro and in vivo, and show preferential tumor accumulation.


2022 ◽  
Vol 39 (2) ◽  
Author(s):  
Reza Seyyedi ◽  
Fereshteh Talebpour Amiri ◽  
Soghra Farzipour ◽  
Ehsan Mihandoust ◽  
Seyed Jalal Hosseinimehr

2022 ◽  
Vol 10 (1) ◽  
pp. e003543
Author(s):  
Chunwan Lu ◽  
Dafeng Yang ◽  
John D Klement ◽  
Yolonda L Colson ◽  
Nicholas H Oberlies ◽  
...  

BackgroundGranzyme B is a key effector of cytotoxic T lymphocytes (CTLs), and its expression level positively correlates with the response of patients with mesothelioma to immune checkpoint inhibitor immunotherapy. Whether metabolic pathways regulate Gzmb expression in CTLs is incompletely understood.MethodsA tumor-specific CTL and tumor coculture model and a tumor-bearing mouse model were used to determine the role of glucose-6-phosphate dehydrogenase (G6PD) in CTL function and tumor immune evasion. A link between granzyme B expression and patient survival was analyzed in human patients with epithelioid mesothelioma.ResultsMesothelioma cells alone are sufficient to activate tumor-specific CTLs and to enhance aerobic glycolysis to induce a PD-1hi Gzmblo CTL phenotype. However, inhibition of lactate dehydrogenase A, the key enzyme of the aerobic glycolysis pathway, has no significant effect on tumor-induced CTL activation. Tumor cells induce H3K9me3 deposition at the promoter of G6pd, the gene that encodes the rate-limiting enzyme G6PD in the pentose phosphate pathway, to downregulate G6pd expression in tumor-specific CTLs. G6PD activation increases acetyl-coenzyme A (CoA) production to increase H3K9ac deposition at the Gzmb promoter and to increase Gzmb expression in tumor-specific CTLs converting them from a Gzmblo to a Gzmbhi phenotype, thus increasing CTL tumor lytic activity. Activation of G6PD increases Gzmb+ tumor-specific CTLs and suppresses tumor growth in tumor-bearing mice. Consistent with these findings, GZMB expression level was found to correlate with increased survival in patients with epithelioid mesothelioma.ConclusionG6PD is a metabolic checkpoint in tumor-activated CTLs. The H3K9me3/G6PD/acetyl-CoA/H3K9ac/Gzmb pathway is particularly important in CTL activation and immune evasion in epithelioid mesothelioma.


2021 ◽  
Vol 42 (1) ◽  
pp. 397-405
Author(s):  
NICOLE R. WOOD ◽  
JACOB GARRITSON ◽  
ALISSA MATHIAS ◽  
JAMES M. HAUGHIAN ◽  
REID HAYWARD

2021 ◽  
Vol 15 (1) ◽  
pp. 15
Author(s):  
Romina Castelli ◽  
Manuel Ibarra ◽  
Ricardo Faccio ◽  
Iris Miraballes ◽  
Marcelo Fernández ◽  
...  

Aptamers are oligonucleotides that have the characteristic of recognizing a target with high affinity and specificity. Based on our previous studies, the aptamer probe Sgc8-c-Alexa647 is a promising tool for molecular imaging of PTK7, which is an interesting biomarker in cancer. In order to improve the delivery of this probe as well as create a novel drug delivery nanosystem targeted to the PTK7 receptor, we evaluate the co-association between the probe and preformed nanostructures. In this work, preformed pegylated liposomes (PPL) and linear and branched pristine polymeric micelles (PMs), based on PEO–PPO–PEO triblock copolymers were used: poloxamer F127® and poloxamines T1307® and T908®. For it, Sgc8-c-Alexa647 and its co-association with the different nanostructures was exhaustively analyzed. DLS analysis showed nanometric sizes, and TEM and AFM showed notable differences between free- and co-associated probe. Likewise, all nanosystems were evaluated on A20 lymphoma cell line overexpressing PTK7, and the confocal microscopy images showed distinctness in cellular uptake. Finally, the biodistribution in BALB/c mice bearing lymphoma-tumor and pharmacokinetic study revealed an encouraging profile for T908-probe. All data obtained from this work suggested that PMs and, more specifically T908 ones, are good candidates to improve the pharmacokinetics and the tumor uptake of aptamer-based probes.


Author(s):  
Hui Liu ◽  
Chunlei Guo ◽  
Yuhong Shang ◽  
Lin Zeng ◽  
Haixue Jia ◽  
...  

In recent years, supramolecular nanoparticles consisting of peptides and drugs have been regarded as useful drug delivery systems for tumor therapy. Pemetrexed (PEM) is a multitarget drug that is effective for many cancers, such as non-small cell lung cancer. Here, RGD-conjugated molecular nanoparticles mainly composed of an anticancer drug of PEM (PEM-FFRGD) were prepared to deliver PEM to tumors. The peptide could self-assemble into a nanoparticle structure with diameter of about 20 nm. Moreover, the nanoparticle showed favorable solubility and biocompatibility compared with those of PEM, and the MTT test on A549 and LLC cells showed that the PEM-FFRGD nanoparticles had stronger cytotoxic activity than PEM alone. Most importantly, the nanoparticle could promote tumor apoptosis and decrease mitochondrial energy metabolism in tumors. In vivo studies indicated that PEM-FFRGD nanoparticles had enhanced antitumor efficacy in LLC tumor-bearing mice compared to that of PEM. Our observations suggested that PEM-FFRGD nanoparticles have great practical potential for application in lung cancer therapy.


2021 ◽  
Author(s):  
◽  
Brittany Franch ◽  

Cancer cachexia is defined as the unintentional loss of skeletal muscle mass with or without fat loss that cannot be reversed by conventional nutritional support. Cachexia occurs in ~20% of cancer patients. More specifically, 50% of lung cancer patients, the most common cancer worldwide, develop cachexia. Cachexia occurs most often in lung and gastrointestinal cancers, whereas breast and prostate have the lowest rate of cachexia. Cancer-induced cachexia disrupts skeletal muscle protein turnover (decreasing protein synthesis and increasing protein degradation). Skeletal muscle’s capacity for protein synthesis is highly sensitive to local and systemic stimuli that are controlled by mTORC1 and AMPK signaling. During cachexia, altered protein turnover is thought to occur through suppressed anabolic signaling via mTORC1, coinciding with the chronic activation of AMPK. While progress has been made in understanding some of the mechanisms underlying the suppressed anabolic signaling in cachectic muscle, gaps still remain in our understanding of muscle’s ability to respond to anabolic stimulus prior to cachexia development. The purpose of this study was to determine if cachexia progression disrupts the feeding regulation of AMPK signaling and if gp130 signaling and muscle contraction could regulate this process. Specific aim 1 examined the feeding regulation of skeletal muscle protein synthesis in pre-cachectic tumor bearing mice. Feeding increased muscle protein synthesis, while lowering AMPK signaling in pre-cachectic tumor bearing mice. Importantly, pre-cachectic tumor bearing mice have overall suppressed muscle protein synthesis independent of the fast or fed condition. Muscle specific AMPK loss was sufficient to improve the fasting suppression of muscle mTORC1 and protein synthesis in pre-cachectic tumor bearing mice. Specific aim 2 examined if muscle gp130 signaling regulates the feeding regulation of AMPK during cancer cachexia progression. Muscle gp130 loss lowered the fasting induction of AMPK in pre-cachectic tumor bearing mice without improving protein synthesis. Muscle gp130 loss did not alter the feeding regulation of muscle Akt/mTORC1 signaling and protein synthesis. Specific Aim 3 examined if an acute bout of muscle contractions could improve the muscle protein synthesis response to feeding during the progression of cachexia. Pre-cachectic tumor bearing mice exhibit suppressed protein synthesis in response low frequency electrical stimulation, and the inability to synergistically induce protein synthesis in response to feeding and contraction. In summary, pre-cachectic tumor bearing mice have lowered Akt/mTORC1 signaling and protein synthesis. Feeding can induce Akt/mTORC1 and protein synthesis and AMPK regulates the fasting suppression of protein synthesis in pre-cachectic tumor bearing mice. While gp130 loss reduces AMPK it is not sufficient to improve protein synthesis in pre-cachectic tumor bearing mice. The added protein synthesis response to feeding and contraction is blunted in pre-cachectic tumor bearing mice. These findings provide novel insight into the regulation of Akt/mTORC1 signaling and protein synthesis in response to feeding. Additionally, these studies highlight gp130’s regulation of AMPK prior to cachexia development, and the blunted anabolic muscle response to feeding and contraction in pre-cachectic tumor bearing mice. By understanding these intracellular signaling processes and perturbations prior to cachexia development, we will be able to elucidate potential therapeutic targets and treatment options to manipulate and prevent cancer cachexia.


Sign in / Sign up

Export Citation Format

Share Document