scholarly journals μ–e conversion in nuclei versus : an effective field theory point of view

1998 ◽  
Vol 421 (1-4) ◽  
pp. 250-258 ◽  
Author(s):  
Martti Raidal ◽  
Arcadi Santamaria
Universe ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 11
Author(s):  
Philippe Brax ◽  
Santiago Casas ◽  
Harry Desmond ◽  
Benjamin Elder

Long range scalar fields with a coupling to matter appear to violate known bounds on gravitation in the solar system and the laboratory. This is evaded thanks to screening mechanisms. In this short review, we shall present the various screening mechanisms from an effective field theory point of view. We then investigate how they can and will be tested in the laboratory and on astrophysical and cosmological scales.


2014 ◽  
Vol 23 (12) ◽  
pp. 1442012 ◽  
Author(s):  
Justin Khoury ◽  
Godfrey E. J. Miller ◽  
Andrew J. Tolley

Traditional derivations of general relativity (GR) from the graviton degrees of freedom assume spacetime Lorentz covariance as an axiom. In this paper, we survey recent evidence that GR is the unique spatially-covariant effective field theory of the transverse, traceless graviton degrees of freedom. The Lorentz covariance of GR, having not been assumed in our analysis, is thus plausibly interpreted as an accidental or emergent symmetry of the gravitational sector. From this point of view, Lorentz covariance is a necessary feature of low-energy graviton dynamics, not a property of spacetime. This result has revolutionary implications for fundamental physics.


2016 ◽  
Vol 25 (05) ◽  
pp. 1641006 ◽  
Author(s):  
Bingwei Long

The present note summarizes the discourse on power counting issues of chiral nuclear forces, with an emphasis on renormalization-group invariance. Given its introductory nature, I will lean toward narrating a coherent point of view on the concepts, rather than covering comprehensively the development of chiral nuclear forces in different approaches.


2019 ◽  
Vol 222 ◽  
pp. 04003
Author(s):  
Petr Mandrik

The study of the anomalous non-resonant HH production is presented from the point of view of effective field theory (EFT) parameterization. The searches for pp → HH → γγWW, pp → HH → γγbb and pp → HH → bbbb processes by ATLAS experiment at the Large Hadron Collider (LHC) are reproduced. The selection efficiencies and exclusion limits on the HH production cross for different Beyond Standard Model (BSM) EFT benchmark models are obtained using the fast Monte-Carlo simulation of the ATLAS detector.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Andreas Crivellin ◽  
Martin Hoferichter

Abstract With the long-standing tension between experiment and Standard-Model (SM) prediction in the anomalous magnetic moment of the muon aμ recently reaffirmed by the Fermilab experiment, the crucial question becomes which other observables could be sensitive to the underlying physics beyond the SM to which aμ may be pointing. While from the effective field theory (EFT) point of view no direct correlations exist, this changes in specific new physics models. In particular, in the case of explanations involving heavy new particles above the electroweak (EW) scale with chiral enhancement, which are preferred to evade exclusion limits from direct searches, correlations with other observables sensitive to EW symmetry breaking are expected. Such scenarios can be classified according to the SU(2)L representations and the hypercharges of the new particles. We match the resulting class of models with heavy new scalars and fermions onto SMEFT and study the resulting correlations with h → μμ and Z → μμ decays, where, via SU(2)L symmetry, the latter process is related to Z → νν and modified W-μ-ν couplings.


2020 ◽  
Vol 9 (5) ◽  
Author(s):  
matteo Baggioli ◽  
Michael Landry

We build an effective field theory (EFT) for quasicrystals -- aperiodic incommensurate lattice structures -- at finite temperature, entirely based on symmetry arguments and a well-define action principle. By means of Schwinger-Keldysh techniques, we derive the full dissipative dynamics of the system and we recover the experimentally observed diffusion-to-propagation crossover of the phason mode. From a symmetry point of view, the diffusive nature of the phason at long wavelengths is due to the fact that the internal translations, or phason shifts, are symmetries of the system with no associated Noether currents. The latter feature is compatible with the EFT description only because of the presence of dissipation (finite temperature) and the lack of periodic order. Finally, we comment on the similarities with certain homogeneous holographic models and we formally derive the universal relation between the pinning frequency of the phonons and the damping and diffusion constant of the phason.


Effective field theory (EFT) is a general method for describing quantum systems with multiple-length scales in a tractable fashion. It allows us to perform precise calculations in established models (such as the standard models of particle physics and cosmology), as well as to concisely parametrize possible effects from physics beyond the standard models. EFTs have become key tools in the theoretical analysis of particle physics experiments and cosmological observations, despite being absent from many textbooks. This volume aims to provide a comprehensive introduction to many of the EFTs in use today, and covers topics that include large-scale structure, WIMPs, dark matter, heavy quark effective theory, flavour physics, soft-collinear effective theory, and more.


Sign in / Sign up

Export Citation Format

Share Document