Membrane wing aerodynamics for micro air vehicles

2003 ◽  
Vol 39 (6-7) ◽  
pp. 425-465 ◽  
Author(s):  
Yongsheng Lian ◽  
Wei Shyy ◽  
Dragos Viieru ◽  
Baoning Zhang
Author(s):  
Peter J. Attar ◽  
Raymond E. Gordnier ◽  
Jordan W. Johnston ◽  
William A. Romberg ◽  
Ramkumar N. Parthasarathy

The fluid and structural response of two different membrane wing Micro Air Vehicles is studied through computation and experiment. A (three) batten-reinforced fixed wing membrane micro air vehicle is used to determine the effect of membrane prestrain and fixed angle of attack on flutter and limit cycle behavior of fixed wing membrane Micro Air Vehicles. For each configuration tested, flutter and subsequent limit cycle oscillations are measured in wind tunnel tests and predicted using an aeroelastic computational model consisting of a nonlinear finite element model coupled to a vortex lattice solution of the Laplace equation and boundary conditions. Correlation between the predicted and measured onset of limit cycle oscillation is good as is the prediction of the amplitude of the limit cycle at the trailing edge of the lower membrane. A direct correlation between levels of strain and the phase of the membranes during the limit cycle is found in the computation and thought to also occur in the experiment. The second membrane wing micro air vehicle configuration is that of a plunging membrane airfoil model. This model is studied computationally using a sixth-order finite difference solution of the Navier-Stokes equations coupled to a nonlinear string finite element model. The effect, on the structural and fluid response, of plunging Strouhal number, reduced frequency and static angle of attack is examined. At two degree angle of attack, and Strouhal number of 0.2, the effect of increasing the plunging reduced frequency is to decrease the sectional lift coefficient and increase the sectional drag coefficient. At this angle of attack, minimal change in the sectional lift coefficient is found when increasing from a Strouhal number of 0.2 to 0.5 at reduced frequencies of 0.5 and 5.903, the lowest and highest values of this parameter which are studied in this work. For this angle of attack the maximum change which occurs when increasing the Strouhal number from 0.2 to 0.5 is at a reduced frequency of 1.5. When the effect of angle of attack is studied, it is found that at a Strouhal number of 0.5 and reduced frequency of 1.5 the plunging flexible model demonstrates improved lift characteristics over the fixed flexible airfoil case. The greatest improvement occurs at an angle of attack of 2 degrees followed by 10 degrees and then 6 degrees. Finally the effect on the flow characteristics of airfoil flexibility is investigated by increasing the membrane pre-strain from a nominal value of 5 percent to that of 20 percent. This increase in pre-strain results in a reduced value of sectional lift coefficient as compared the 5 percent pre-strain case at the same fixed angle of attack, Strouhal number and reduced frequency.


2010 ◽  
Vol 47 (4) ◽  
pp. 1300-1308 ◽  
Author(s):  
Jordan W. Johnston ◽  
Will Romberg ◽  
Peter J. Attar ◽  
Ramkumar Parthasarathy

Author(s):  
Raymond E. Gordnier ◽  
Peter J. Attar

Development of an aeroelastic solver with application to flexible membrane wings for micro air vehicles is presented. A high-order (up to 6th order) Navier-Stokes solver is coupled with a geometrically nonlinear p-version Reissner-Mindlin finite element plate model to simulate the highly flexible elastic membrane. An implicit LES approach is employed to compute the mixed laminar/transitional/turbulent flowfields present for the low Reynolds number flows associated with micro air vehicles. Computations are performed for an aspect ratio two membrane wing at angles of attack α = 10°, 16° and 23° for a Reynolds number, Re = 24,300. Comparisons of the computational results with experimental PIV and surface deflection measurements demonstrated reasonable agreement. Reduced separation and enhanced lift are obtained due to favorable interactions between the flexible membrane wing and the unsteady flow over the wing. The impact of flexibility on the aerodynamic performance comes primarily from the development of mean camber with some further effects arising from the interaction between the dynamic motion of the membrane and the unsteady flowfield above. At lower angles of attack this lift enhancement comes at the cost of reduced L/D. The nose-down pitching moment increases with flexibility at the lowest angle of attack but is reduced for the higher two angles of attack. These results suggest that membrane flexibility might provide a means to reduce the impact of strong gust encounter by maintaining lift and reducing the effect of the gust on pitching moment.


AIAA Journal ◽  
2003 ◽  
Vol 41 (12) ◽  
pp. 2492-2494 ◽  
Author(s):  
Yongsheng Lian ◽  
Wei Shyy ◽  
Peter G. Ifju ◽  
Erwan Verron

2011 ◽  
Vol 48 (6) ◽  
pp. 1960-1967 ◽  
Author(s):  
Uttam Kumar Chakravarty ◽  
Roberto Albertani

2005 ◽  
Vol 58 (4) ◽  
pp. 283-301 ◽  
Author(s):  
Wei Shyy ◽  
Peter Ifju ◽  
Dragos Viieru

Micro air vehicles (MAVs) with a wingspan of 15cm or shorter, and flight speed around 10m∕s have attracted substantial interest in recent years. There are several prominent features of MAV flight: (i) low Reynolds number (104-105), resulting in degraded aerodynamic performance, (ii) small physical dimensions, resulting in certain favorable scaling characteristics including structural strength, reduced stall speed, and impact tolerance, and (iii) low flight speed, resulting in order one effect of the flight environment and intrinsically unsteady flight characteristics. Flexible wings utilizing membrane materials are employed by natural flyers such as bats and insects. Compared to a rigid wing, a membrane wing can better adapt to the stall and has the potential for morphing to achieve enhanced agility and storage consideration. We will discuss the aerodynamics of both rigid and membrane wings under the MAV flight condition. To understand membrane wing performance, the fluid and structure interaction is of critical importance. Flow structures associated with the low Reynolds number and low aspect ratio wing, such as pressure distribution, separation bubble, and tip vortex, as well as structural dynamics in response to the surrounding flow field are discussed. Based on the computational capabilities for treating moving boundary problems, an automated wing shape optimization technique is also developed. Salient features of the flexible-wing-based MAV, including the vehicle concept, flexible wing design, novel fabrication methods, aerodynamic assessment, and flight data analysis are highlighted.


AIAA Journal ◽  
2004 ◽  
Vol 42 (2) ◽  
pp. 424-426 ◽  
Author(s):  
Yongsheng Lian ◽  
Wei Shyy ◽  
Raphael T. Haftka

2005 ◽  
Vol 42 (6) ◽  
pp. 1530-1536 ◽  
Author(s):  
Dragos Viieru ◽  
Roberto Albertani ◽  
Wei Shyy ◽  
Peter G. Ifju

Sign in / Sign up

Export Citation Format

Share Document