flight speed
Recently Published Documents


TOTAL DOCUMENTS

232
(FIVE YEARS 55)

H-INDEX

28
(FIVE YEARS 2)

Mathematics ◽  
2022 ◽  
Vol 10 (2) ◽  
pp. 236
Author(s):  
Dmitry Shalymov ◽  
Oleg Granichin ◽  
Yury Ivanskiy ◽  
Zeev Volkovich

This paper proposes a novel method for the unbounded oscillation prevention of an aircraft wing under the flexural torsional flutter, an innovative multiagent attitude to control an aircraft wing with a surface consisting of managed rotating “feathers” (agents). Theoretical evaluation of the method demonstrates its high aptitude to avoid an aircraft wing’s flexural-torsional vibrations via expansion of the model’s ability to dampen the wing oscillations. It potentially allows increasing an aircraft’s speed without misgiving of the flutter. A new way to control an aircraft wing based on the Speed-Gradient methodology is suggested to increase the maximal possible flight speed without a flutter occurrence. Provided experiments demonstrate the theoretical advantage of the multiagent approach to the “feathers” rotation control.


2022 ◽  
Vol 52 (3) ◽  
Author(s):  
Daniela Maria Martin ◽  
Renata Franciéli Moraes ◽  
Maria Christine Rizzon Cintra ◽  
Claudete Reisdorfer Lang ◽  
Alda Lúcia Gomes Monteiro ◽  
...  

ABSTRACT: Temperament often depends on the animals’ reaction to people, social and environmental conditions. However, little is known about the influence of changes in the pasture environment on cattle temperament. Thus, this study was designed to evaluate if an animals’ temperament changes in response to being kept in a silvopastoral system. This study evaluated the effect of the tree components in a pasture environment on the temperament of any grazing cattle in integrated crop-livestock systems. A total of thirty-two Angus steers were allocated to either a livestock (L) or livestock-forest (LF) system and observed from December 2019 to February 2020. Each animal was evaluated for their reactivity score, flight speed, and number of vocalizations. The statistical model established that the animals were random effects and that the treatments and periods were fixed effects using the MIXED procedure, and the means were compared using LSMeans. The flight speed and number of vocalizations were similar in both production systems, while the reactivity score was lower for animals kept in the LF system when compared to those in the L system. This suggested that the LF system interferes positively with the animal’s temperament in relation to the L production system. However, additional research is needed to understand the influence of the production system on animal temperament.


2021 ◽  
Vol 18 (185) ◽  
Author(s):  
P. Henningsson ◽  
L. C. Johansson

For all flyers, aeroplanes or animals, making banked turns involve a rolling motion which, due to higher induced drag on the outer than the inner wing, results in a yawing torque opposite to the turn. This adverse yaw torque can be counteracted using a tail, but how animals that lack tail, e.g. all insects, handle this problem is not fully understood. Here, we quantify the performance of turning take-off flights in butterflies and find that they use force vectoring during banked turns without fully compensating for adverse yaw. This lowers their turning performance, increasing turn radius, since thrust becomes misaligned with the flight path. The separation of function between downstroke (lift production) and upstroke (thrust production) in our butterflies, in combination with a more pronounced adverse yaw during the upstroke increases the misalignment of the thrust. This may be a cost the butterflies pay for the efficient thrust-generating upstroke clap, but also other insects fail to rectify adverse yaw during escape manoeuvres, suggesting a general feature in functionally two-winged insect flight. When lacking tail and left with costly approaches to counteract adverse yaw, costs of flying with adverse yaw may be outweighed by the benefits of maintaining thrust and flight speed.


Aerospace ◽  
2021 ◽  
Vol 8 (12) ◽  
pp. 362
Author(s):  
Muhammad Yousaf Bhatti ◽  
Sang-Gil Lee ◽  
Jae-Hung Han

This paper proposes an approach to analyze the dynamic stability and develop trajectory-tracking controllers for flapping-wing micro air vehicle (FWMAV). A multibody dynamics simulation framework coupled with a modified quasi-steady aerodynamic model was implemented for stability analysis, which was appended with flight control block for accomplishing various flight objectives. A gradient-based trim search algorithm was employed to obtain the trim conditions by solving the fully coupled nonlinear equations of motion at various flight speeds. Eigenmode analysis showed instability that grew with the flight speed in longitudinal dynamics. Using the trim conditions, we linearized dynamic equations of FWMAV to obtain the optimal gain matrices for various flight speeds using the linear-quadratic regulator (LQR) technique. The gain matrices from each of the linearized equations were used for gain scheduling with respect to forward flight speed. The reference tracking augmented LQR control was implemented to achieve transition flight tracking that involves hovering, acceleration, and deceleration phases. The control parameters were updated once in a wingbeat cycle and were changed smoothly to avoid any discontinuities during simulations. Moreover, trajectories tracking control was achieved successfully using a dual loop control approach. Control simulations showed that the proposed controllers worked effectively for this fairly nonlinear multibody system.


2021 ◽  
Vol 9 ◽  
Author(s):  
Paolo Becciu ◽  
Michele Panuccio ◽  
Giacomo Dell’Omo ◽  
Nir Sapir

Atmospheric conditions are known to affect flight propensity, behaviour during flight, and migration route in birds. Yet, the effects of fog have only rarely been studied although they could disrupt orientation and hamper flight. Fog could limit the visibility of migrating birds such that they might not be able to detect landmarks that guide them during their journey. Soaring migrants modulate their flight speed and direction in relation to the wind vector to optimise the cost of transport. Consequently, landmark-based orientation, as well as adjustments of flight speed and direction in relation to wind conditions, could be jeopardised when flying in fog. Using a radar system operated in a migration bottleneck (Strait of Messina, Italy), we studied the behaviour of soaring birds under variable wind and fog conditions over two consecutive springs (2016 and 2017), discovering that migrating birds exhibited a wider scatter of flight directions and responded differently to wind under fog conditions. Birds flying through fog deviated more from the mean migration direction and increased their speed with increasing crosswinds. In addition, airspeed and groundspeed increased in the direction of the crosswind, causing the individuals to drift laterally. Our findings represent the first quantitative empirical evidence of flight behaviour changes when birds migrate through fog and explain why low visibility conditions could risk their migration journey.


Agriculture ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1038
Author(s):  
Hao Zhang ◽  
Lijun Qi ◽  
Junjie Wan ◽  
Elizabeth M. Musiu ◽  
Jiarui Zhou ◽  
...  

The accurate setting of input parameters in the numerical simulation of downwash airflow from a UAV sprayer is important for acceptable simulation results. To provide real data of simulation parameters (rotor speed and pitch angle) for the numerical simulation of downwash airflow, a wireless simulation parameter measurement system (WSPM-System) was designed and tested in this study. The system consists of hardware and software designed based on Arduino and LabVIEW, respectively. Wireless communication was realized by nRF24L01. The lattice Boltzmann method (LBM) was applied for the numerical simulation of downwash airflow. The results showed that the valid communication distance of the WSPM-System was 100 m, with a packet loss rate of less than 1%. While hovering, the rotor speed dropped by about 30% when the load of the UAV sprayer changed from 16 kg to 4 kg, which resulted in the maximum vertical downward velocity (VVD) on the horizontal detection surface dropping by about 23%. Under forward flight, the rotor speed in the front (n1, n6) and rear (n3, n4) of the UAV sprayer, respectively, showed a negative linear correlation and positive linear correlation with flight speed (R2 > 0.95). Meanwhile, the rotor speed in the middle (n2, n5) was consistent with the rotor speed while hovering under the same load; the pitch angle showed a positive linear correlation with flight speed (R2 > 0.94). A correlation analysis of measured and simulated values of the VVD revealed that the numerical simulation of downwash airflow with the parameters provided by the WSPM-System was reliable (R2 = 0.91). This study confirmed that the input value of the rotor speed in the fluid software needed to be determined according to the application parameters of the UAV sprayer, thus providing a feasible method and system for obtaining real simulation parameters.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 2-3
Author(s):  
Daniela M Melendez ◽  
Sonia Marti ◽  
Timothy D Schwinghamer ◽  
Derek B Haley ◽  
Karen S Schwartzkopf-Genswein

Abstract The aim of this study was to assess the effects of conditioning, rest, and post-rest transport duration on welfare indicators of 6–7 mo old beef calves. Three hundred and twenty-eight weaned calves (237 ± 29.7 kg BW) were randomly assigned to a 2 × 2 × 2 nested factorial design: conditioning, conditioned (C) or non-conditioned (N); rest, 0 (R0) or 8 (R8) h, and post-rest transport, 4 (T4) or 15 (T15) h. Calves were sampled prior to the first loading (L1), after 20h of transport, prior to and after the additional 4 or 15-h transport, and at 1, 2, 3, 5, 14, and 28 d after transport ended. Data were analyzed using the GLIMMIX procedure of SAS. Fixed effects included conditioning, transport and time nested within rest period, while random effects included animal and pen. Greater shrink (P < 0.01) was observed in C than N calves after the initial 20-h transport. The N calves had greater (P < 0.01) ADG than C calves between L1 and d 5, while C had greater (P < 0.01) ADG than N calves between 14 and 28 d. L-lactate concentrations and flight speed were greater (P ≤ 0.05) in C than N calves between L1 and d 5. The R8-T4 calves had greater (P < 0.01) ADG than R8-T15 calves between L1 and d 5. The R0-T4 calves had greater (P = 0.02) L-lactate concentrations than R0-T15 and R8-T4 calves on d 1. The R0 calves had greater (P < 0.01) ADG than R8 calves between 14 and 28 d. Preliminary results show physiological, behavioral, and performance differences across treatments, however, additional indicators are required to accurately assess the effect of conditioning, rest, and post-rest transport durations on calf welfare.


Author(s):  
Lia R. V. Gilmour ◽  
Marc W. Holderied ◽  
Simon P. C. Pickering ◽  
Gareth Jones

Acoustic deterrents have shown potential as a viable mitigation measure to reduce human impacts on bats, however, the mechanisms underpinning acoustic deterrence of bats have yet to be explored. Bats avoid ambient ultrasound in their environment and alter their echolocation calls in response to masking noise. Using stereo thermal videogrammetry and acoustic methods, we tested predictions that i) bats would avoid acoustic deterrents and forage and social call less in a ‘treated airspace’; ii) deterrents would cause bats to fly with more direct flight paths akin to commuting behaviour and in line with a reduction in foraging activity, resulting in increased flight speed and decreased flight tortuosity; iii) bats would alter their echolocation call structure in response to the masking deterrent sound. As predicted, overall bat activity was reduced by 30% and we recorded a significant reduction in counts of Pipistrellus pygmaeus (27%), Myotis spp. (probably M. daubentonii) (26%) and Nyctalus and Eptesicus spp. (68%) passes. P. pygmaeus feeding buzzes were also reduced by the deterrent in relation to general activity (by 38%), however social calls were not (only 23% reduction). Bats also increased their flight speed and reduced the tortuosity of their flight paths and P. pygmaeus reduced echolocation call bandwidth and start frequency of calls in response to deterrent playback, probably due to the masking effect of the sound. Deterrence could therefore be used to remove bats from areas where they forage, for example wind turbines and roads, where they may be under threat from direct mortality.


Molecules ◽  
2021 ◽  
Vol 26 (18) ◽  
pp. 5671
Author(s):  
Chang Jo Kim ◽  
Won Tae Jeong ◽  
Kee Sung Kyung ◽  
Hee-Dong Lee ◽  
Danbi Kim ◽  
...  

We assessed the residual distribution and temporal trend of picarbutrazox sprayed by agricultural multicopters on Chinese cabbage and considered fortification levels and flying speeds. In plot 2, 14 days after the last spraying, the residues decreased by ~91.3% compared with those in the samples on day 0. The residues in the crops decreased by ~40.8% of the initial concentration owing to growth (dilution effect) and by ~50.6% after excluding the dilution effect. As the flight speed increased, picarbutrazox residues decreased (p < 0.05, least significant deviation [LSD]). At 2 m s−1 flight speed, the residual distribution differed from the dilution rate of the spraying solution. The average range of picarbutrazox residues at all sampling points was 0.007 to 0.486, below the limit of quantitation −0.395, 0.005–0.316, and 0.005–0.289 mg kg−1 in plots 1, 2, 3, and 4, respectively, showing significant differences (p < 0.05, LSD). These results indicated that the residual distribution of picarbutrazox sprayed by using a multicopter on the Chinese cabbages was not uniform. However, the residues were less than the maximum residue limit in all plots. Accordingly, picarbutrazox was considered to have a low risk to human health if it was sprayed on cabbage according to the recommended spraying conditions.


Sign in / Sign up

Export Citation Format

Share Document