Membrane Wing-Based Micro Air Vehicles

2005 ◽  
Vol 58 (4) ◽  
pp. 283-301 ◽  
Author(s):  
Wei Shyy ◽  
Peter Ifju ◽  
Dragos Viieru

Micro air vehicles (MAVs) with a wingspan of 15cm or shorter, and flight speed around 10m∕s have attracted substantial interest in recent years. There are several prominent features of MAV flight: (i) low Reynolds number (104-105), resulting in degraded aerodynamic performance, (ii) small physical dimensions, resulting in certain favorable scaling characteristics including structural strength, reduced stall speed, and impact tolerance, and (iii) low flight speed, resulting in order one effect of the flight environment and intrinsically unsteady flight characteristics. Flexible wings utilizing membrane materials are employed by natural flyers such as bats and insects. Compared to a rigid wing, a membrane wing can better adapt to the stall and has the potential for morphing to achieve enhanced agility and storage consideration. We will discuss the aerodynamics of both rigid and membrane wings under the MAV flight condition. To understand membrane wing performance, the fluid and structure interaction is of critical importance. Flow structures associated with the low Reynolds number and low aspect ratio wing, such as pressure distribution, separation bubble, and tip vortex, as well as structural dynamics in response to the surrounding flow field are discussed. Based on the computational capabilities for treating moving boundary problems, an automated wing shape optimization technique is also developed. Salient features of the flexible-wing-based MAV, including the vehicle concept, flexible wing design, novel fabrication methods, aerodynamic assessment, and flight data analysis are highlighted.

Aviation ◽  
2020 ◽  
Vol 23 (4) ◽  
pp. 104-113
Author(s):  
Ahmed Aboelezz ◽  
Yunes Elqudsi ◽  
Mostafa Hassanalian ◽  
Ahmed Desoki

The increase in the number of Unmanned Aerial Vehicles (UAVs) and Micro Air Vehicles (MAVs), which are used in a variety of applications has led to a surge in low Reynolds number aerodynamics research. Flow around fixedwing MAVs has an unusual behavior due to its low aspect ratio and operates at low Reynolds number, which demanded to upgrade the used wind tunnel for this study. This upgrade enables measuring the small aerodynamics forces and moment of fixed-wing MAVs. The wind tunnel used in this work is upgraded with a state of art data acquisition system to deal with the different sensors signals in the wind tunnel. For accurate measurements, the sting balance, angle sensor, and airspeed sensor are calibrated. For validation purposes, an experiment is made on a low aspect ratio flat plate wing at low Reynolds number, and the measured data are corrected and compared with published results. The procedure presented in this paper for the first time gave a detailed and complete guide for upgrading and calibrating old wind tunnel, all the required corrections to correct the measured data was presented, the turbulence level correction new technique presented in this paper could be used to estimate the flow turbulence effect on the measured data and correct the measured data against published data.


2019 ◽  
Vol 18 (8) ◽  
pp. 690-710
Author(s):  
Ronan Serré ◽  
Nicolas Gourdain ◽  
Thierry Jardin ◽  
Marc C. Jacob ◽  
Jean-Marc Moschetta

The demand in micro-air vehicles is increasing as well as their potential missions. Either for discretion in military operations or noise pollution in civilian use, noise reduction of micro-air vehicles is a goal to achieve. Aeroacoustic research has long been focusing on full scale rotorcrafts. At micro-air vehicle scales however, the hierarchization of the numerous sources of noise is not straightforward, as a consequence of the relatively low Reynolds number that ranges typically from 5000 to 100,000 and low Mach number of approximately 0.1. This knowledge, however, is crucial for aeroacoustic optimization and blade noise reduction in drones. This contribution briefly describes a low-cost, numerical methodology to achieve noise reduction by optimization of micro-air vehicle rotor blade geometry. Acoustic power measurements show a reduction of 8 dB(A). The innovative rotor blade geometry allowing this noise reduction is then analysed in detail, both experimentally and numerically with large eddy simulation using lattice Boltzmann method. Turbulence interaction noise is shown to be a major source of noise in this configuration of low Reynolds number rotor in hover, as a result of small scale turbulence and high frequency unsteady aeroadynamics impinging the blades at the leading edge.


2000 ◽  
Author(s):  
Ajit Pal Singh ◽  
S. H. Winoto ◽  
D. A. Shah ◽  
K. G. Lim ◽  
Robert E. K. Goh

Abstract Performance characteristics of some low Reynolds number airfoils for the use in micro air vehicles (MAVs) are computationally studied using XFOIL at a Reynolds number of 80,000. XFOIL, which is based on linear-vorticity stream function panel method coupled with a viscous integral formulation, is used for the analysis. In the first part of the study, results obtained from the XFOIL have been compared with available experimental data at low Reynolds numbers. XFOIL is then used to study relative aerodynamic performance of nine different airfoils. The computational analysis has shown that the S1223 airfoil has a relatively better performance than other airfoils considered for the analysis.


Author(s):  
M.P. Uthra ◽  
A. Daniel Antony

Most admirable and least known features of low Reynolds number flyers are their aerodynamics. Due to the advancements in low Reynolds number applications such as Micro Air vehicles (MAV), Unmanned Air Vehicles (UAV) and wind turbines, researchers’ concentrates on Low Reynolds number aerodynamics and its effect on aerodynamic performance. The Laminar Separation Bubble (LSB) plays a deteriorating role in affecting the aerodynamic performance of the wings. The parametric study has been performed to analyse the flow around cambered, uncambered wings with different chord and Reynolds number in order to understand the better flow characteristics, LSB and three dimensional flow structures. The computational results are compared with experimental results to show the exact location of LSB. The presence of LSB in all cases is evident and it also affects the aerodynamic characteristics of the wing. There is a strong formation of vortex in the suction side of the wing which impacts the LSB and transition. The vortex structures impact on the LSB is more and it also increases the strength of the LSB throughout the span wise direction.


Author(s):  
Michael R. Hays ◽  
Jeffrey Morton ◽  
William S. Oates ◽  
Benjamin T. Dickinson

Electrically controlled adaptive materials are ideal candidates for developing high agility micro-air-vehicles (MAV) due to their intrinsic multi-functionality. The dielectric elastomer VHB 4910 is one such material, where deformation occurs with an applied electric field. Here, we study the aerostructural response and control authority of a VHB 4910 membrane wing. An experimental membrane-wing platform was constructed by stretching VHB 4910 over a rigid elliptical wing-frame. The low Reynolds number (chord Reynolds number < 106) aerodynamics of the elliptical wing were characterized with different electrostatic fields applied. We observe an overall increase in lift with maximum gains of 20% at 4.5 kV, and demonstrate the ability to delay stall. Aerodynamic effects are investigated with membrane displacement and strain data obtained through visual image correlation (VIC). The VIC data is compared to a finite deforming finite element shell model to help understand structural shape changes under electrostatic fields and low Reynolds number aerodynamic flows. The model is formulated to directly input three dimensional membrane displacements to quantify aerodynamic loads on the electroactive membrane surface.


AIAA Journal ◽  
2020 ◽  
Vol 58 (6) ◽  
pp. 2560-2570
Author(s):  
James W. McElreath ◽  
Moble Benedict ◽  
Nathan Tichenor

Sign in / Sign up

Export Citation Format

Share Document