membrane wing
Recently Published Documents


TOTAL DOCUMENTS

85
(FIVE YEARS 14)

H-INDEX

14
(FIVE YEARS 1)

2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Syam Narayanan S. ◽  
Asad Ahmed R.

Purpose The purpose of this study is to experimentally analyse the effect of flexible and stiffened membrane wings in the lift generation of flapping micro air vehicle (MAV). Design/methodology/approach This is analysed by the rectangle wing made up of polyethylene terephthalate sheets of 100 microns. MAV is tested for the free stream velocity of 2 m/s, 4 m/s, 6 m/s and k* of 0, 0.25, 1, 3, 8. This test is repeated for flapping MAV of the free flapping frequency of 2 Hz, 4 Hz, 6 Hz, 10 Hz and 12 Hz. Findings This study shows that the membrane wing with proper stiffeners can give better lift generation capacity than a flexible wing. Research limitations/implications Only a normal force component is measured, which is perpendicular to the longitudinal axis of the model. Practical implications In MAVs, the wing structures are thin and light, so the effect of fluid-structure interactions is important at low Reynold’s numbers. This data are useful for the MAV developments. Originality/value The effect of chord-wise flexibility in lift generation is the study of the effect of a flexible wing and rigid wing in MAV. It is analysed by the rectangle wing. The coefficient of normal force at different free stream conditions was analysed.


2021 ◽  
Vol 126 ◽  
pp. 100738
Author(s):  
Sonya Tiomkin ◽  
Daniella E. Raveh
Keyword(s):  

2021 ◽  
Vol 6 (01) ◽  
pp. 73-90
Author(s):  
Joseph Banks ◽  
Margot Cocard ◽  
Jacobo Jaspe

Abstract The aim of this research is to quantify the membrane deformations and their impact on performance for a ribbed wing sail. A 1m x 0.8m rectangular planform NACA0012 foil was designed to replicate a single section of a wing-sail. Two foils were manufactured based on this geometry, one out of solid foam and one using a rib and membrane structure. These were tested in the R.J. Mitchell closed return 3.6 m x 2.5 m wind tunnel at the University of Southampton. Their aerodynamic performance was assessed over a range of angles of attack using a six-component force balance showing the overall performance of the membrane wing was reduced by between 5-11% depending on the analysis conducted. A stereo camera system was used to perform Digital Image Correlation (DIC) in order to quantify the full field deformation of the membrane wing structure whilst under aerodynamic load. This showed membrane deformations of up to 15% of the section thickness. The experimental membrane displacements were then used to create a deformed wing sail geometry, removing the effect of foil bend and twist, allowing a CFD investigation of the impact of membrane deformations alone. This indicated that the static membrane deformations resulted in a decrease in performance of up to 1.3% compared to the rigid aerofoil.


2021 ◽  
Vol 33 (6) ◽  
pp. 063610
Author(s):  
Guangjing Huang ◽  
Yingjie Xia ◽  
Yuting Dai ◽  
Chao Yang ◽  
You Wu

2021 ◽  
Vol 11 (8) ◽  
pp. 3416
Author(s):  
Lung-Jieh Yang ◽  
Reshmi Waikhom ◽  
Wei-Chen Wang ◽  
Vivek Jabaraj Joseph ◽  
Balasubramanian Esakki ◽  
...  

A flapping wing micro air vehicle (FWMAV) demands high lift and thrust generation for a desired payload. In view of this, the present work focuses on a novel way of enhancing the lift characteristics through integrating check-valves in the flapping wing membrane. Modal analysis and static analysis are performed to determine the natural frequency and deformation of the check-valve. Based on the inference, the check-valve opens and closes during the upstroke flapping and downstroke flapping, respectively. Wind tunnel experiments were conducted by considering the two cases of wing design, i.e., with and without a check-valve for various driving voltages, wind speeds and different inclined angles. A 20 cm-wingspan polyethylene terephthalate (PET) membrane wing with two check-valves, composed of central disc-cap with radius of 7.43 mm, supported by three S-beams, actuated by Evans mechanism to have 90° stroke angle, is considered for the 10 gf (gram force) FWMAV study. The aerodynamic performances, such as lift and net thrust for these two cases, are evaluated. The experimental result demonstrates that an average lift of 17 gf is generated for the case where check-valves are attached on the wing membrane to operate at 3.7 V input voltage, 30° inclined angle and 1.5 m/s wind speed. It is inferred that sufficient aerodynamic benefit with 68% of higher lift is attained for the wing membrane incorporated with check-valve.


Author(s):  
Mohammad Khairul Habib Pulok ◽  
Uttam K. Chakravarty

Abstract Unmanned aerial vehicles are applicable in a lot of areas including weather condition monitoring, surveillance, and reconnaissance. They need further development in design, especially, for the turbulent atmospheric conditions. Smart materials are considered for wing manufacturing for gust alleviation whereas membranes are found suitable for such applications, and therefore, analyzing aerodynamic properties of the membrane is important. Wind gusts create an abrupt atmospheric situation for unmanned aerial vehicles during the flight. In this study, a continuous gust profile and two types of stochastic gust models, i.e., Dryden gust model and von Karman gust model are developed to study the effects of gust load on a flexible membrane wing. One of the promising ways to reduce the effects of the gust is by using an electroactive membrane wing. A fluid-structure-interaction model by coupling the finite element model of the membrane and computational fluid dynamics model of the surrounding airflow is generated. Aerodynamic coefficients are calculated from the forces found from the numerical results for different gust velocities. A wind-tunnel experimental setup is used to investigate the aerodynamic responses of the membrane wing. Dryden gust model and von Karman gust model are found comparable with a minimum variation of magnitude in the gust velocity profile. The coefficients of lift and drag fluctuate significantly with the change in velocity due to wind gust. A validation of the fluid-structure-interaction model is performed by comparing the numerical results for the lift and drag coefficients with the experimental results. The outcome of this study contributes to better understand the aerodynamics and maneuverability of unmanned aerial vehicles in the gust environment.


Sign in / Sign up

Export Citation Format

Share Document