In vitro nephrotoxicity induced by chloronitrobenzenes in renal cortical slices from Fischer 344 rats

2002 ◽  
Vol 129 (1-2) ◽  
pp. 133-141 ◽  
Author(s):  
Suk K Hong ◽  
Dianne K Anestis ◽  
John G Ball ◽  
Monica A Valentovic ◽  
Gary O Rankin
1984 ◽  
Vol 246 (3) ◽  
pp. E266-E270 ◽  
Author(s):  
H. J. Armbrecht ◽  
L. R. Forte ◽  
B. P. Halloran

The purpose of this study was to determine how serum 1,25(OH)2D, renal production of [3H]1,25(OH)2D and [3H]24,25(OH)2D from [3H]25(OH)D, and serum IPTH change with age and dietary Ca restriction. Male Fischer 344 rats aged 3, 13, and 25 mo were placed on either a high-Ca (1.2%) or low-Ca (0.02%) vitamin D-replete diet. After 4 wk, serum was collected, and renal conversion of [3H]25(OH)D3 to [3H]1,25(OH)2D3 and [3H]24,25(OH)2D3 was measured in vitro using isolated renal cortical slices. Serum 1,25(OH)2D and renal [3H]1,25(OH)2D3 production were markedly reduced in 13- and 25-mo-old rats compared with 3-mo-old rats fed the low-Ca diet. In 3-mo-old rats, feeding the low-Ca diet increased serum 1,25(OH)2D by 18-fold and renal [3H]1,25(OH)2D3 production by threefold compared with feeding the high-Ca diet. In 25-mo-old rats, dietary Ca had no effect on these parameters. Renal [3H]24,25(OH)2D3 production was increased in the 13- and 25-mo-old rats compared with the 3-mo-old rats. Serum IPTH increased with age regardless of diet and was significantly increased by the low-Ca diet in 3-mo but not in 13- or 25-mo-old rats. The changes in serum 1,25(OH)2D and renal [3H]1,25(OH)2D3 production observed in this study may account for the previously observed age-related decline in intestinal Ca absorption in this animal model.


Toxicology ◽  
2002 ◽  
Vol 172 (2) ◽  
pp. 113-123 ◽  
Author(s):  
Monica A Valentovic ◽  
John G Ball ◽  
H Sun ◽  
Gary O Rankin

1996 ◽  
Vol 80 (2) ◽  
pp. 445-451 ◽  
Author(s):  
S. K. Powers ◽  
D. Criswell ◽  
R. A. Herb ◽  
H. Demirel ◽  
S. Dodd

Recent evidence demonstrates that aging results in an increase in fast (type IIB) myosin heavy chain (MHC) in the rat diaphragm. It is unknown whether this age-related change in fast MHC influences the diaphragmatic maximal shortening velocity (Vmax). Therefore, we tested the hypothesis that aging is associated with an increase in the diaphragmatic Vmax and that the increase in the Vmax is highly correlated with the percentage of type IIb MHC. In vitro contractile properties were measured with costal diaphragm strips obtained from young (4 mo old; n = 8) and (old 24 mo old; n = 8) male Fischer-344 rats. Diaphragmatic maximal tetanic specific force production was 14.5% lower in the old compared with the young animals (23.0 +/- 0.4 vs. 19.7 +/- 0.8 N/cm2; P < 0.05). In contrast, the diaphragmatic Vmax was significantly higher in the old compared with the young animals (5.5 +/- 0.1 vs. 4.4 +/- 0.3 lengths/s; P < 0.05). Although the percent type IIb MHC was significantly higher (approximately +14%; P < 0.05) in the old compared with the young animals, the correlation between Vmax and percent type IIb MHC was relatively low (r = 0.50; P = 0.05). These data support the hypothesis that an age-related increase in diaphragmatic Vmax occurs; however, factors in addition to type IIb MHC are involved in regulating diaphragmatic Vmax. Interestingly, although aging resulted in a decrease in diaphragmatic maximal specific force production, power output at all muscle loads was maintained in the old animals due to the increase in diaphragmatic shortening velocity.


2003 ◽  
Vol 285 (3) ◽  
pp. H1015-H1022 ◽  
Author(s):  
Alexandra Adler ◽  
Eric Messina ◽  
Ben Sherman ◽  
Zipping Wang ◽  
Harer Huang ◽  
...  

We investigated the role of nitric oxide (NO) in the control of myocardial O2 consumption in Fischer 344 rats. In Fischer rats at 4, 14, and 23 mo of age, we examined cardiac function using echocardiography, the regulation of cardiac O2 consumption in vitro, endothelial NO synthase (eNOS) protein levels, and potential mechanisms that regulate superoxide. Aging was associated with a reduced ejection fraction [from 75 ± 2%at4moto66 ± 3% ( P < 0.05) at 23 mo] and an increased cardiac diastolic volume [from 0.60 ± 0.04 to 1.00 ± 0.10 ml ( P < 0.01)] and heart weight (from 0.70 ± 0.02 to 0.90 ± 0.02 g). The NO-mediated control of cardiac O2 consumption by bradykinin or enalaprilat was not different between 4 mo (36 ± 2 or 34 ± 3%) and 14 mo (29 ± 1 or 25 ± 3%) but markedly ( P < 0.05) reduced in 23-mo-old Fischer rats (15 ± 3 or 7 ± 2%). The response to the NO donor S-nitroso- N-acetyl penicillamine was not different across groups (35%, 35%, and 44%). Interestingly, the eNOS protein level was not different at 4, 14, and 23 mo. The addition of tempol (1 mmol/l) to the tissue bath eliminated the depression in the control of cardiac O2 consumption by bradykinin (25 ± 3%) or enalaprilat (28 ± 3%) in 23-mo-old Fischer rats. We next examined the levels of enzymes involved in the production and breakdown of superoxide. The expression of Mn SOD, Cu/Zn SOD, extracellular SOD, and p67phox, however, did not differ between 4- and 23-mo-old rats. Importantly, there was a marked increase in gp91phox, and apocynin restored the defect in NO-dependent control of cardiac O2 consumption at 23 mo to that seen in 4-mo-old rats, identifying the role of NADPH oxidase. Thus increased biological activity of superoxide and not decreases in the enzyme that produces NO are responsible for the altered control of cardiac O2 consumption by NO in 23-mo-old Fischer rats. Increased oxidant stress in aging, by decreasing NO bioavailability, may contribute not only to changes in myocardial function but also to altered regulation of vascular tone and the progression of cardiac or vascular disease.


2003 ◽  
Vol 284 (5) ◽  
pp. F1032-F1036 ◽  
Author(s):  
H. J. Armbrecht ◽  
M. A. Boltz ◽  
T. L. Hodam

The capacity of parathyroid hormone (PTH) to stimulate renal 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] production declines with age in the rat. The purpose of these studies was to determine whether this decline is due to a decreased capacity of PTH to increase the mRNA levels of CYP1α, the cytochrome P-450 component of the 25(OH)D3-1α-hydroxylase. Young (2 mo) and adult (12 mo) male Fischer 344 rats were parathyroidectomized (PTX). After 72 h, PTX rats were injected with PTH or vehicle at 24, 6, and 3 h before death, and renal CYP1α mRNA levels were measured by ribonuclease protection assay. In young rats, PTH markedly increased plasma 1,25(OH)2D3 and renal 1,25(OH)2D3 production. However, in adult rats, the response to PTH was less than 30% of that seen in young rats. Renal CYP1α mRNA levels, on the other hand, were increased over fivefold by PTH in both young and adult rats. In in vitro studies, PTH/forskolin increased CYP1α mRNA levels over twofold in renal slices from both young and adult PTX rats. These studies demonstrate that the decreased capacity of PTH to increase 1,25(OH)2D3 production in adult rats is not due to decreased induction of CYP1α mRNA.


2020 ◽  
Vol 34 (S1) ◽  
pp. 1-1
Author(s):  
Gary Rankin ◽  
William M. Hicks ◽  
Jae Ju ◽  
David Vidrine ◽  
Christopher Racine ◽  
...  

Toxicology ◽  
2001 ◽  
Vol 162 (3) ◽  
pp. 149-156 ◽  
Author(s):  
Monica Valentovic ◽  
John G Ball ◽  
Syam Stoll ◽  
G.O Rankin

Sign in / Sign up

Export Citation Format

Share Document