Breakdown of Fermi liquid in correlated electron systems

1999 ◽  
Vol 263 (1-4) ◽  
pp. 197-207 ◽  
Author(s):  
Claudio Castellani ◽  
Carlo Di Castro
2015 ◽  
Vol 29 (15) ◽  
pp. 1530005 ◽  
Author(s):  
Naoya Arakawa

I review many-body effects on the resistivity of a multi-orbital system beyond Landau's Fermi-liquid (FL) theory. Landau's FL theory succeeds in describing electronic properties of some correlated electron systems at low temperatures. However, the behaviors deviating from the temperature dependence in the FL, non-FL-like behaviors, emerge near a magnetic quantum-critical point (QCP). These indicate the importance of many-body effects beyond Landau's FL theory. Those effects in multi-orbital systems have been little understood, although their understanding is important to deduce ubiquitous properties of correlated electron systems and characteristic properties of multi-orbital systems. To improve this situation, I formulate the resistivity of a multi-orbital Hubbard model using the extended Éliashberg theory and adopt this method to the inplane resistivity of quasi-two-dimensional paramagnetic ruthenates in combination with the fluctuation-exchange approximation including the current vertex corrections arising from the self-energy and Maki–Thompson term. The results away from and near the antiferromagnetic QCP reproduce the temperature dependence observed in Sr 2 RuO 4 and Sr 2 Ru 0.075 Ti 0.025 O 4, respectively. I highlight the importance of not only the momentum and the temperature dependence of the damping of a quasiparticle but also its orbital dependence in discussing the resistivity of correlated electron systems.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
D. Valentinis ◽  
J. Zaanen ◽  
D. van der Marel

AbstractA highlight of Fermi-liquid phenomenology, as explored in neutral $$^3$$ 3 He, is the observation that in the collisionless regime shear stress propagates as if one is dealing with the transverse phonon of a solid. The existence of this “transverse zero sound” requires that the quasiparticle mass enhancement exceeds a critical value. Could such a propagating shear stress also exist in strongly correlated electron systems? Despite some noticeable differences with the neutral case in the Galilean continuum, we arrive at the verdict that transverse zero sound should be generic for mass enhancement higher than 3. We present an experimental setup that should be exquisitely sensitive in this regard: the transmission of terahertz radiation through a thin slab of heavy-fermion material will be strongly enhanced at low temperature and accompanied by giant oscillations, which reflect the interference between light itself and the “material photon” being the actual manifestation of transverse zero sound in the charged Fermi liquid.


Sign in / Sign up

Export Citation Format

Share Document