Some Problems Affecting the Assessment of Great Lakes Water Quality Using Benthic Invertebrates

1989 ◽  
Vol 15 (4) ◽  
pp. 611-622 ◽  
Author(s):  
David R. Barton
1999 ◽  
Vol 39 (12) ◽  
pp. 133-140
Author(s):  
J. Y. Li ◽  
D. Banting

Storm water quality management in urbanized areas remains a challenge to Canadian municipalities as the funding and planning mechanisms are not well defined. In order to provide assistance to urbanized municipalities in the Great Lakes areas, the Great Lakes 2000 Cleanup Fund and the Ontario Ministry of the Environment commissioned the authors to develop a Geographic Information System planning tool for storm water quality management in urbanized areas. The planning tool comprises five steps: (1) definition of storm water retrofit goals and objectives; (2) identification of appropriate retrofit storm water management practices; (3) formulation of storm water retrofit strategies; (4) evaluation of strategies with respect to retrofit goals and objectives; and (5) selection of storm water retrofit strategies. A case study of the fully urbanized Mimico Creek wateshed in the City of Toronto is used to demonstrate the application of the planning tool.


2017 ◽  
Vol 24 (2) ◽  
pp. 285-298 ◽  
Author(s):  
Aneta Spyra ◽  
Justyna Kubicka ◽  
Małgorzata Strzelec

AbstractRecognition of the deteriorating conditions of rivers worldwide has called for increased efforts to improve the ecological quality of impacted river systems. This is particularly important in areas that have suffered from a significant impact of human pressure on the ecological status of water. Field studies were conducted in the Ruda River in an area that had undergone anthropogenic disturbances. The objectives of our survey were to test the biological metrics based on benthic macroinvertebrates at four study sites. Spring and autumn surveys of benthic invertebrates indicated that based on the BMWP and BMWP(PL) indices, water quality was higher in comparison with the value of Multimetric index at all of the sites that were studied. Our results revealed that the water quality was higher at the study sites that are located above the dam reservoir based on both the chemical and biological parameters. This study also indicated that both spring and autumn constitute appropriate periods for carrying out monitoring studies. The values of multimeric index indicated the same water quality (except for site 1) in both sampling periods. Anthropogenic transformations of a riverbed influence the flora and fauna and affect the ecological status of rivers.


2003 ◽  
Vol 60 (6) ◽  
pp. 676-689 ◽  
Author(s):  
Sheila A McNair ◽  
Patricia Chow-Fraser

We quantified the chlorophyll a content of planktonic algae and benthic algae in periphyton on acrylic rods and in epiphyton growing on macrophytes in 24 coastal wetlands in all five Laurentian Great Lakes. Sites were selected to represent a wide range of environmental conditions ranging from nutrient-poor, clear-water marshes with abundant macrophytes to nutrient-enriched, turbid systems devoid of aquatic vegetation. Water quality and species and percent cover of submergent macrophytes were measured in each wetland. Principal components analysis (PCA) showed that total phosphorus, turbidity, and suspended solids, variables associated with human-induced degradation, were most strongly correlated with PC axis 1 (PC1), accounting for 69% of the total variation. The PC1 site score was significantly related to both periphyton and phytoplankton biomass, respectively accounting for 54 and 70% of the total variation in periphyton and phytoplankton data, whereas PC1 only accounted for 18% of the variation in epiphyton biomass. Periphytic and epiphytic biomass were negatively correlated with percent cover and species richness of submergent macrophytes, but phytoplankton biomass was not. We conclude that periphytic and planktonic chlorophyll a biomass are good indicators of human-induced water-quality degradation and recommend that both benthic and planktonic algal biomass should be routinely monitored as part of an effective wetland management program.


Author(s):  
Nancy Langston

By the 1960s, the failures of research and cooperative pragmatism to control Great Lakes pollution were becoming painfully evident. In 1972 Canada and the United States signed the Great Lakes Water Quality Agreement. The agreement was groundbreaking in its focus on cleaning up existing pollution and preventing new pollutants, but the International Joint Commission has no authority to force the two nations to implement recommendations. Therefore, when Canada or the United States refuses to abide by the Great Lakes Water Quality Agreement (in its various revisions), very little happens in response—besides calls for more research.


2018 ◽  
Vol 47 (5) ◽  
pp. 1086-1093 ◽  
Author(s):  
Muruleedhara N. Byappanahalli ◽  
Meredith B. Nevers ◽  
Dawn A. Shively ◽  
Ashley Spoljaric ◽  
Christopher Otto

Sign in / Sign up

Export Citation Format

Share Document