scholarly journals APELIN-13 CO-TREATMENT WITH UMBILICAL CORD BLOOD-DERIVED MESENCHYMAL STEM CELLS IMPROVES ENGRAFTED CELL SURVIVAL AND INHIBITS MACROPHAGE ACTIVATION IN PULMONARY ARTERIAL HYPERTENSION MURINE MODEL

2017 ◽  
Vol 69 (11) ◽  
pp. 1900
Author(s):  
Albert Jang ◽  
Seyeon Oh ◽  
Seungbum Choi ◽  
Sehyun Chae ◽  
Jeongsik Moon ◽  
...  
2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Caixin Zhang ◽  
Pengbo Wang ◽  
Anaz Mohammed ◽  
Zhewen Zhou ◽  
Shuwen Zhang ◽  
...  

Pulmonary arterial hypertension (PAH) is a serious condition. However, prevailing therapeutic strategies are not effective enough to treat PAH. Therefore, finding an effective therapy is clearly warranted. Adipose-derived mesenchymal stem cells (ASCs) and ASCs-derived exosomes (ASCs-Exos) exert protective effects in PAH, but the underlying mechanism remains unclear. Using a coculture of ASCs and monocrotaline pyrrole (MCTP)-treated human pulmonary artery endothelial cells (HPAECs), we demonstrated that ASCs increased cell proliferation in MCTP-treated HPAECs. Results showed that ASCs-Exos improved proliferation of both control HPAECs and MCTP-treated HPAECs. In addition, by transfecting ASCs with antagomir we observed that low exosomal miR-191 expression inhibited HPAECs proliferation whereas the agomir improved. Similar results were observed in vivo using a monocrotaline (MCT)-induced PAH rat model following ASCs transplantation. And ASCs transplantation attenuated MCT-induced PAH albeit less than the antagomir treated group. Finally, we found that miR-191 repressed the expression of bone morphogenetic protein receptor 2 (BMPR2) in HPAECs and PAH rats. Thus, we conjectured that miR-191, in ASCs and ASCs-Exos, plays an important role in PAH via regulation of BMPR2. These findings are expected to contribute to promising therapeutic strategies for treating PAH in the future.


Sign in / Sign up

Export Citation Format

Share Document