THE USE OF MACHINE LEARNING ALGORITHMS FOR THE IDENTIFICATION OF STABLE OBSTRUCTIVE CORONARY ARTERY DISEASE

2020 ◽  
Vol 75 (11) ◽  
pp. 254
Author(s):  
Jun Tae Kim ◽  
Sungsoo Cho ◽  
Su Yeon Lee ◽  
Dongmin Kim ◽  
Seong-Hoon Lim ◽  
...  
Author(s):  
Harinder Singh ◽  
Tasneem Bano Rehman ◽  
Ch. Gangadhar ◽  
Rohit Anand ◽  
Nidhi Sindhwani ◽  
...  

2020 ◽  
Author(s):  
Seema Singh Saharan ◽  
Pankaj Nagar ◽  
Kate Townsend Creasy ◽  
Eveline O. Stock ◽  
James Feng ◽  
...  

Abstract Background As per the 2017 WHO fact sheet, Coronary Artery Disease (CAD) is the primary cause of death in the world, and accounts for 31% of total fatalities. The unprecedented 17.6 million deaths caused by CAD in 2016 underscores the urgent need to facilitate proactive and accelerated pre-emptive diagnosis. The current research took an innovative approach to implement K Nearest Neighbor (k-NN) and ensemble Random Forest Machine Learning algorithms to achieve a targeted “At Risk” Coronary Artery Disease (CAD) classification. To ensure better generalizability mechanisms like k-fold cross validation, hyperparameter tuning and statistical significance (p<.05) were employed. The classification is also unique from the aspect of incorporating 35 cytokines as biomarkers within the predictive feature space of Machine Learning algorithms.Results A total of seven classifiers were developed, with four built using 35 cytokine predictive features and three built using 9 cytokines statistically significant (p<.05) across CAD versus Control groups determined by independent two sample t tests. The best prediction accuracy of 100% was achieved by Random Forest ensemble using nine significant cytokines. Significant cytokines were selected to decrease the noise level of the data, allowing for better classification. Additionally, from the bio-medical perspective, it was enlightening to empirically observe the interplay of the cytokines. Compared to Controls, moderately correlated (correlation coefficient r=.5) cytokines “IL1-β”, “IL-10” were both significant and down regulated in the CAD group. Both cytokines were primarily responsible for the Random forest generated 100% classification. In conjunction with Machine Learning (ML) algorithms, the traditional statistical techniques like correlation and t tests were leveraged to obtain insights that brought forth a role for cytokines in the investigation of CAD risk.Conclusions Presently, as large-scale efforts are gaining momentum to enable early detection of individuals at risk for CAD by the application of novel and powerful ML algorithms, detection can be further improved by incorporating additional biomarkers. Investigation of emerging role of cytokines in CAD can materially enhance the detection of risk and the discovery of mechanisms of disease that can lead to new therapeutic approaches.


Sign in / Sign up

Export Citation Format

Share Document