disease diagnostics
Recently Published Documents


TOTAL DOCUMENTS

402
(FIVE YEARS 158)

H-INDEX

36
(FIVE YEARS 7)

Author(s):  
Saima Owais ◽  
Yasir Hasan Siddique

Abstract: Parkinson’s disease (PD) is the second most debilitating neurodegenerative movement disorder. It is characterized by the presence of fibrillar alpha-synuclein amassed in the neurons, known as Lewy bodies. Certain cellular and molecular events are involved leading to the degeneration of dopaminergic neurons. However, the origin and implication of such events are still uncertain. Nevertheless, the role of microRNAs (miRNAs) as important biomarkers and therapeutic molecules is unquestionable. The most challenging task by far in PD treatment has been its late diagnosis followed by therapeutics. miRNAs are an emerging hope to meet the need of early diagnosis, thereby promising an improved movement symptom and prolonged life of the patients. The continuous efforts in discovering the role of miRNAs could be made possible by the utilisation of various animal models of PD. These models help us to understand insights into the mechanism of the disease. Moreover, miRNAs have been surfaced as therapeutically important molecules with distinct delivery systems enhancing their success rate. This review aims at providing an outline of different miRNAs implicated in either PD-associated gene regulation or involved in therapeutics.


Author(s):  
Gun Srijuntongsiri ◽  
Atiwat Mhoowai ◽  
Sukuma Samngamnim ◽  
Pornchalit Assavacheep ◽  
Janine T. Bossé ◽  
...  

Species-specific markers are crucial for infectious disease diagnostics. Mutations within a marker sequence can lead to false-negative results, inappropriate treatment, and economic loss.


2021 ◽  
Author(s):  
Despina Soteriou ◽  
Markéta Kubánková ◽  
Christine Schweitzer ◽  
Rocío López-Posadas ◽  
Rashmita Pradhan ◽  
...  

AbstractRapid and accurate histopathological diagnosis during surgery is critical for clinical decision-making. The prevalent method of intraoperative consultation pathology is time, labour and cost intensive and requires the expertise of trained pathologists. Here, we present an alternative technique for the rapid, label-free analysis of biopsy samples by sequentially assessing the physical phenotype of singularized, suspended cells in high-throughput. This new diagnostic pipeline combines enzyme-free, mechanical dissociation of tissues with real-time deformability cytometry at measurement rates of 100 – 1,000 cells/sec, and machine learning-based analysis. We show that physical phenotype parameters extracted from brightfield images of single cells can be used to distinguish subpopulations of cells in various tissues, without prior knowledge or the need for molecular markers. Further, we demonstrate the potential of our method for inflammatory bowel disease diagnostics. Using unsupervised dimensionality reduction and logistic regression, we accurately differentiate between healthy and tumorous tissue in both mouse and human biopsy samples. The method delivers results within 30 minutes, laying the groundwork for a fast and marker-free diagnostic pipeline to detect pathological changes in solid biopsies.


Cryobiology ◽  
2021 ◽  
Vol 103 ◽  
pp. 172
Author(s):  
Raffaele Brogna ◽  
Harriëtte Oldenhof ◽  
Harald Sieme ◽  
Constança Figueiredo ◽  
Willem F. Wolkers

Biosensors ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 433
Author(s):  
Małgorzata Kujawska ◽  
Sheetal K. Bhardwaj ◽  
Yogendra Kumar Mishra ◽  
Ajeet Kaushik

Parkinson’s disease (PD) is a neurodegenerative disease in which the neurotransmitter dopamine (DA) depletes due to the progressive loss of nigrostriatal neurons. Therefore, DA measurement might be a useful diagnostic tool for targeting the early stages of PD, as well as helping to optimize DA replacement therapy. Moreover, DA sensing appears to be a useful analytical tool in complex biological systems in PD studies. To support the feasibility of this concept, this mini-review explores the currently developed graphene-based biosensors dedicated to DA detection. We discuss various graphene modifications designed for high-performance DA sensing electrodes alongside their analytical performances and interference studies, which we listed based on their limit of detection in biological samples. Moreover, graphene-based biosensors for optical DA detection are also presented herein. Regarding clinical relevance, we explored the development trends of graphene-based electrochemical sensing of DA as they relate to point-of-care testing suitable for the site-of-location diagnostics needed for personalized PD management. In this field, the biosensors are developed into smartphone-connected systems for intelligent disease management. However, we highlighted that the focus should be on the clinical utility rather than analytical and technical performance.


2021 ◽  
pp. 1-3
Author(s):  
Nicholas Clute-Reinig ◽  
Suman Jayadev ◽  
Kristoffer Rhoads ◽  
Anne-Laure Le Ny

Dementia and Alzheimer’s disease (AD) are global health crises, with most affected individuals living in low- or middle-income countries. While research into diagnostics and therapeutics remains focused exclusively on high-income populations, recent technological breakthroughs suggest that low-cost AD diagnostics may soon be possible. However, as this disease shifts onto those with the least financial and structural ability to shoulder its burden, it is incumbent on high-income countries to develop accessible AD healthcare. We argue that there is a scientific and ethical mandate to develop low-cost diagnostics that will not only benefit patients in low-and middle-income countries but the AD field as a whole.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zeyu Zhang ◽  
Ji Li ◽  
Zengqiang Zhang ◽  
Youzhou Liu ◽  
Yuquan Wei

Tomato wilt disease, caused by the Fusarium oxysporum is an ever-increasing threat for agricultural production, and unreasonable fertilization and pesticide abuse caused environmental challenge. Increasing evidence suggested that microbiomes or those associated with crops, played key roles on plant health. Plant disease dynamics were affected by multiple biotic and abiotic factors including phytopathogen population density, the genetic type of the pathogen and the host, in particular, the composition and assembly of the host-associated microbiome. However, it was unclear how pathogen invasion interaction and correlate with endophytic bacterial communities in natural field conditions. To study this, we sampled temporally the tomato plants that were exposed to F. oxysporum invasions over one crop season. High-throughput sequencing were performed to explore the correlation between agricultural practice, pathogen invasion, and endophytic microbiota communities. Results showed that pathogen invasion had clear effect on the endophytic and a strong link between increased pathogen densities and reduced abundance of Bacillus sp., which are crucial taxonomy for suppressiveness to F. oxysporum in vitro and in greenhouse condition. In summary, monitoring the dynamics of endophytic bacteria communities and densities of pathogen could thus open new avenue for more accurate disease diagnostics and high-efficiency screening antagonisms methods in the future, and our results will broaden the agricultural view of beneficial microbiota as biological control agents against plant pathogen.


Sign in / Sign up

Export Citation Format

Share Document