Oxidative stress and adenine nucleotide control of mitochondrial permeability transition

2000 ◽  
Vol 28 (2) ◽  
pp. 251-260 ◽  
Author(s):  
Stephen P Kantrow ◽  
Lynn G Tatro ◽  
Claude A Piantadosi
2004 ◽  
Vol 383 (1) ◽  
pp. 101-109 ◽  
Author(s):  
Yanmin LI ◽  
Nicholas JOHNSON ◽  
Michela CAPANO ◽  
Mina EDWARDS ◽  
Martin CROMPTON

Cyclophilin-D is a peptidylprolyl cis–trans isomerase of the mitochondrial matrix. It is involved in mitochondrial permeability transition, in which the adenine nucleotide translocase of the inner membrane is transformed from an antiporter to a non-selective pore. The permeability transition has been widely considered as a mechanism in both apoptosis and necrosis. The present study examines the effects of cyclophilin-D on the permeability transition and lethal cell injury, using a neuronal (B50) cell line stably overexpressing cyclophilin-D in mitochondria. Cyclophilin-D overexpression rendered isolated mitochondria far more susceptible to the permeability transition induced by Ca2+ and oxidative stress. Similarly, cyclophilin-D overexpression brought forward the onset of the permeability transition in intact cells subjected to oxidative stress. In addition, in the absence of stress, the mitochondria of cells overexpressing cyclophilin-D maintained a lower inner-membrane potential than those of normal cells. All these effects of cyclophilin-D overexpression were abolished by cyclosporin A. It is concluded that cyclophilin-D promotes the permeability transition in B50 cells. However, cyclophilin-D overexpression had opposite effects on apoptosis and necrosis; whereas NO-induced necrosis was promoted, NO- and staurosporine-induced apoptosis were inhibited. These findings indicate that the permeability transition leads to cell necrosis, but argue against its involvement in apoptosis.


1999 ◽  
Vol 66 ◽  
pp. 181-203 ◽  
Author(s):  
Andrew P. Halestrap

The mitochondrial permeability transition (mPT) involves the opening of a non-specific pore in the inner membrane of mitochondria, converting them from organelles whose production of ATP sustains the cell, to instruments of death. Here, I first summarize the evidence in favour of our model for the molecular mechanism of the mPT. It is proposed that the adenine nucleotide translocase (ANT) is converted into a non-specific pore through a calcium-mediated conformational change. This requires the binding of a unique cyclophilin (cyclophilin-D, CyP-D) to the ANT, except when matrix [Ca2+] is very high. Binding of CyP-D is increased in response to oxidative stress and some thiol reagents which sensitize the mPT to [Ca2+]. Matrix adenine nucleotides decrease the sensitivity of the mPT to [Ca2+] by binding to the ANT. This is antagonized by carboxyatractyloside (an inhibitor of the ANT) and by modification of specific thiol groups on the ANT by oxidative stress or thiol reagents; such treatments thus enhance the mPT. In contrast, decreasing intracellular pH below 7.0 greatly desensitizes the mPT to [Ca2+]. Conditions which sensitize the mPT towards [Ca2+] are found in hearts reperfused after a period of ischaemia, a process that may irreversibly damage the heart (reperfusion injury). We have demonstrated directly that mPT pores open during reperfusion (but not ischaemia) using a technique that involves entrapment of [3H]deoxyglucose in mitochondria that have undergone the mPT. The mPT may subsequently reverse in hearts that recover from ischaemia/reperfusion, the extent of resealing correlating with recovery of heart function. A variety of agents that antagonize the mPT protect the heart from reperfusion injury, including cyclosporin A, pyruvate and propofol. Mitochondria that undergo the mPT and then reseal may cause cytochrome c release and thus initiate apoptosis in cells subjected to stresses less severe than those causing necrosis. An example is the apoptotic cell death in the hippocampus that occurs several days after insulin-induced hypoglycaemia, and can be prevented by prior treatment with cyclosporin A.


FEBS Letters ◽  
2001 ◽  
Vol 495 (1-2) ◽  
pp. 12-15 ◽  
Author(s):  
Alicia J. Kowaltowski ◽  
Roger F. Castilho ◽  
Anibal E. Vercesi

2001 ◽  
Vol 280 (2) ◽  
pp. H899-H908 ◽  
Author(s):  
Meifeng Xu ◽  
Yigang Wang ◽  
Kyoji Hirai ◽  
Ahmar Ayub ◽  
Muhammad Ashraf

We tested the hypothesis whether calcium preconditioning (CPC) reduces reoxygenation injury by inhibiting mitochondrial permeability transition (MPT). Cultured myocytes were preconditioned by a brief exposure to 1.5 mM calcium (CPC) and subjected to 3 h of anoxia followed by 2 h of reoxygenation (A-R). Myocytes were also treated with 0.2 μM/l cyclosporin A (CsA), an inhibitor of MPT, before A-R. A significant increase of viable cells and reduced lactate dehydrogenase release was observed both in CPC- and CsA-treated myocytes compared with the A-R group. Cytochrome c release was predominantly observed in the cytoplasm of myocytes in the A-R group in contrast with CPC- or CsA-treated groups, where it was restricted only to mitochondria. Similarly, the cell death by apoptosis was also markedly attenuated in these groups. Electron-dense Ca2+ deposits in mitochondria were also less frequent. Atractyloside (20 μM/l), an adenine nucleotide translocase inhibitor, caused changes similar to those in the A-R group, suggesting a role of MPT in A-R injury. Protection by inhibition of MPT by CsA and CPC suggests that MPT plays an important role in reoxygenation/reperfusion injury. The data further suggest that preconditioning inhibits MPT by inhibiting Ca2+accumulation by mitochondria.


2013 ◽  
Vol 304 (5) ◽  
pp. H649-H659 ◽  
Author(s):  
Jiang Zhu ◽  
Mario J. Rebecchi ◽  
Qiang Wang ◽  
Peter S. A. Glass ◽  
Peter R. Brink ◽  
...  

Cardioprotective effects of anesthetic preconditioning and cyclosporine A (CsA) are lost with aging. To extend our previous work and address a possible mechanism underlying age-related differences, we investigated the role of oxidative stress in the aging heart by treating senescent animals with the oxygen free radical scavenger Tempol. Old male Fischer 344 rats (22–24 mo) were randomly assigned to control or Tempol treatment groups for 2 or 4 wk (T×2wk and T×4wk, respectively). Rats received isoflurane 30 min before ischemia-reperfusion injury or CsA just before reperfusion. Myocardial infarction sizes were significantly reduced by isoflurane or CsA in the aged rats treated with Tempol (T×4wk) compared with old control rats. In other experiments, young (4–6 mo) and old rats underwent either chronic Tempol or vehicle treatment, and the levels of myocardial protein oxidative damage, antioxidant enzymes, mitochondrial Ca2+ uptake, cyclophilin D protein, and mitochondrial permeability transition pore opening times were measured. T×4wk significantly increased MnSOD enzyme activity, GSH-to-GSSH ratios, MnSOD protein level, mitochondrial Ca2+ uptake capacity, reduced protein nitrotyrosine levels, and normalized cyclophilin D protein expression in the aged rat heart. T×4wk also significantly prolonged mitochondrial permeability transition pore opening times induced by reactive oxygen species in old cardiomyocytes. Our studies demonstrate that 4 wk of Tempol pretreatment restores anesthetic preconditioning and cardioprotection by CsA in the old rat and that this is associated with decreased oxidative stress and improved mitochondrial function. Our results point to a new protective strategy for the ischemic myocardium in the high-risk older population.


2011 ◽  
Vol 109 (suppl_1) ◽  
Author(s):  
Allison M McGee ◽  
Kyle S McCommis ◽  
M H Laughlin ◽  
Douglas K Bowles ◽  
Christopher P Baines

Hypercholesterolemia has been suggested to have direct negative effects on myocardial function due to increased reactive oxygen species (ROS) generation and increased myocyte death. Mitochondrial permeability transition (MPT) is a significant mediator of cell death, which is enhanced by ROS generation and attenuated by exercise training. The purpose of this study was to investigate the effect of hypercholesterolemia on the MPT response of cardiac mitochondria. We hypothesized that familial hypercholesterolemic (FH) pigs would have an enhanced MPT response, and that exercise training could reverse this phenotype. FH pigs were obtained from the University of Wisconsin. Control, normolipidemic farm pigs were maintained on standard pig chow. After 4 months on a high-fat diet, the FH pigs were switched to the standard pig chow, and randomized to sedentary or exercise groups. The exercise group underwent a progressive treadmill-based training program for 4 months. At the end of the training protocol the animals were sacrificed and the heart removed. MPT was assessed by mitochondrial swelling in response to Ca2+. Protein nitrotyrosylation, GSH levels, and antioxidant enzyme expression were also examined. FH pigs did show an increased MPT response despite no change in the expression of putative MPT pore components adenine nucleotide translocase (ANT), mitochondrial phosphate carrier (PiC), and cyclophilin-D (CypD). FH also caused increased oxidative stress, depicted by increased protein nitrotyrosylation and decreased GSH levels. This was associated with concomitant decreases in the expression of mitochondrial antioxidant enzymes manganese superoxide dismutase (MnSOD) and thioredoxin-2 (Trx2). However, chronic exercise training was able to normalize the MPT response in FH pigs, reduce oxidative stress, and increase MnSOD expression. We conclude that hypercholesterolemia causes increased oxidative stress and enhances the MPT response in the porcine myocardium, and that exercise training can correct for both the increased oxidative stress and MPT alterations observed with hypercholesterolemia.


Sign in / Sign up

Export Citation Format

Share Document