Abstract P237: Exercise Training Prevents Hypercholesterolemia-Induced Cardiac Mitochondrial Dysfunction

2011 ◽  
Vol 109 (suppl_1) ◽  
Author(s):  
Allison M McGee ◽  
Kyle S McCommis ◽  
M H Laughlin ◽  
Douglas K Bowles ◽  
Christopher P Baines

Hypercholesterolemia has been suggested to have direct negative effects on myocardial function due to increased reactive oxygen species (ROS) generation and increased myocyte death. Mitochondrial permeability transition (MPT) is a significant mediator of cell death, which is enhanced by ROS generation and attenuated by exercise training. The purpose of this study was to investigate the effect of hypercholesterolemia on the MPT response of cardiac mitochondria. We hypothesized that familial hypercholesterolemic (FH) pigs would have an enhanced MPT response, and that exercise training could reverse this phenotype. FH pigs were obtained from the University of Wisconsin. Control, normolipidemic farm pigs were maintained on standard pig chow. After 4 months on a high-fat diet, the FH pigs were switched to the standard pig chow, and randomized to sedentary or exercise groups. The exercise group underwent a progressive treadmill-based training program for 4 months. At the end of the training protocol the animals were sacrificed and the heart removed. MPT was assessed by mitochondrial swelling in response to Ca2+. Protein nitrotyrosylation, GSH levels, and antioxidant enzyme expression were also examined. FH pigs did show an increased MPT response despite no change in the expression of putative MPT pore components adenine nucleotide translocase (ANT), mitochondrial phosphate carrier (PiC), and cyclophilin-D (CypD). FH also caused increased oxidative stress, depicted by increased protein nitrotyrosylation and decreased GSH levels. This was associated with concomitant decreases in the expression of mitochondrial antioxidant enzymes manganese superoxide dismutase (MnSOD) and thioredoxin-2 (Trx2). However, chronic exercise training was able to normalize the MPT response in FH pigs, reduce oxidative stress, and increase MnSOD expression. We conclude that hypercholesterolemia causes increased oxidative stress and enhances the MPT response in the porcine myocardium, and that exercise training can correct for both the increased oxidative stress and MPT alterations observed with hypercholesterolemia.

2011 ◽  
Vol 301 (5) ◽  
pp. R1250-R1258 ◽  
Author(s):  
Kyle S. McCommis ◽  
Allison M. McGee ◽  
M. Harold Laughlin ◽  
Douglas K. Bowles ◽  
Christopher P. Baines

Hypercholesterolemia has been suggested to have direct negative effects on myocardial function due to increased reactive oxygen species (ROS) generation and increased myocyte death. Mitochondrial permeability transition (MPT) is a significant mediator of cell death, which is enhanced by ROS generation and attenuated by exercise training. The purpose of this study was to investigate the effect of hypercholesterolemia on the MPT response of cardiac mitochondria. We tested the hypothesis that familial hypercholesterolemic (FH) pigs would have an enhanced MPT response and that exercise training could reverse this phenotype. MPT was assessed by mitochondrial swelling in response to 10–100 μM Ca2+. FH pigs did show an increased MPT response to Ca2+ that was associated with decreases in the expression of the putative MPT pore components mitochondrial phosphate carrier (PiC) and cyclophilin-D (CypD). FH also caused increased oxidative stress, depicted by increased protein nitrotyrosylation, as well as decreased levels of reduced GSH in cardiac mitochondria. Expression of the mitochondrial antioxidant enzymes manganese superoxide dismutase (MnSOD), thioredoxin-2 (Trx2), and peroxiredoxin-3 (Prx3) was greatly reduced in the FH pigs. In contrast, cytosolic catalase expression and activity were increased. However, chronic exercise training was able to normalize the MPT response in FH pigs, reduce mitochondrial oxidative stress, and return MnSOD, Trx2, Prx3, and catalase expression/activities to normal. We conclude that FH reduces mitochondrial antioxidants, increases mitochondrial oxidative stress, and enhances the MPT response in the porcine myocardium, and that exercise training can reverse these detrimental alterations.


2004 ◽  
Vol 383 (1) ◽  
pp. 101-109 ◽  
Author(s):  
Yanmin LI ◽  
Nicholas JOHNSON ◽  
Michela CAPANO ◽  
Mina EDWARDS ◽  
Martin CROMPTON

Cyclophilin-D is a peptidylprolyl cis–trans isomerase of the mitochondrial matrix. It is involved in mitochondrial permeability transition, in which the adenine nucleotide translocase of the inner membrane is transformed from an antiporter to a non-selective pore. The permeability transition has been widely considered as a mechanism in both apoptosis and necrosis. The present study examines the effects of cyclophilin-D on the permeability transition and lethal cell injury, using a neuronal (B50) cell line stably overexpressing cyclophilin-D in mitochondria. Cyclophilin-D overexpression rendered isolated mitochondria far more susceptible to the permeability transition induced by Ca2+ and oxidative stress. Similarly, cyclophilin-D overexpression brought forward the onset of the permeability transition in intact cells subjected to oxidative stress. In addition, in the absence of stress, the mitochondria of cells overexpressing cyclophilin-D maintained a lower inner-membrane potential than those of normal cells. All these effects of cyclophilin-D overexpression were abolished by cyclosporin A. It is concluded that cyclophilin-D promotes the permeability transition in B50 cells. However, cyclophilin-D overexpression had opposite effects on apoptosis and necrosis; whereas NO-induced necrosis was promoted, NO- and staurosporine-induced apoptosis were inhibited. These findings indicate that the permeability transition leads to cell necrosis, but argue against its involvement in apoptosis.


2006 ◽  
Vol 34 (2) ◽  
pp. 232-237 ◽  
Author(s):  
A.P. Halestrap

When mitochondria are exposed to high Ca2+ concentrations, especially when accompanied by oxidative stress and adenine nucleotide depletion, they undergo massive swelling and become uncoupled. This occurs as a result of the opening of a non-specific pore in the inner mitochondrial membrane, known as the MPTP (mitochondrial permeability transition pore). If the pore remains open, cells cannot maintain their ATP levels and this will lead to cell death by necrosis. This article briefly reviews what is known of the molecular mechanism of the MPTP and its role in causing the necrotic cell death of the heart and brain that occurs during reperfusion after a long period of ischaemia. Such reperfusion injury is a major problem during cardiac surgery and in the treatment of coronary thrombosis and stroke. Prevention of MPTP opening either directly, using agents such as cyclosporin A, or indirectly by reducing oxidative stress or Ca2+ overload, provides a protective strategy against reperfusion injury. Furthermore, mice in which a component of the MPTP, CyP-D (cyclophilin D), has been knocked out are protected against heart and brain ischaemia/reperfusion. When cells experience a less severe insult, the MPTP may open transiently. The resulting mitochondrial swelling may be sufficient to cause release of cytochrome c and activation of the apoptotic pathway rather than necrosis. However, the CyP-D-knockout mice develop normally and show no protection against a range of apoptotic stimuli, suggesting that the MPTP does not play a role in most forms of apoptosis.


2013 ◽  
Vol 304 (5) ◽  
pp. H649-H659 ◽  
Author(s):  
Jiang Zhu ◽  
Mario J. Rebecchi ◽  
Qiang Wang ◽  
Peter S. A. Glass ◽  
Peter R. Brink ◽  
...  

Cardioprotective effects of anesthetic preconditioning and cyclosporine A (CsA) are lost with aging. To extend our previous work and address a possible mechanism underlying age-related differences, we investigated the role of oxidative stress in the aging heart by treating senescent animals with the oxygen free radical scavenger Tempol. Old male Fischer 344 rats (22–24 mo) were randomly assigned to control or Tempol treatment groups for 2 or 4 wk (T×2wk and T×4wk, respectively). Rats received isoflurane 30 min before ischemia-reperfusion injury or CsA just before reperfusion. Myocardial infarction sizes were significantly reduced by isoflurane or CsA in the aged rats treated with Tempol (T×4wk) compared with old control rats. In other experiments, young (4–6 mo) and old rats underwent either chronic Tempol or vehicle treatment, and the levels of myocardial protein oxidative damage, antioxidant enzymes, mitochondrial Ca2+ uptake, cyclophilin D protein, and mitochondrial permeability transition pore opening times were measured. T×4wk significantly increased MnSOD enzyme activity, GSH-to-GSSH ratios, MnSOD protein level, mitochondrial Ca2+ uptake capacity, reduced protein nitrotyrosine levels, and normalized cyclophilin D protein expression in the aged rat heart. T×4wk also significantly prolonged mitochondrial permeability transition pore opening times induced by reactive oxygen species in old cardiomyocytes. Our studies demonstrate that 4 wk of Tempol pretreatment restores anesthetic preconditioning and cardioprotection by CsA in the old rat and that this is associated with decreased oxidative stress and improved mitochondrial function. Our results point to a new protective strategy for the ischemic myocardium in the high-risk older population.


2020 ◽  
Vol 127 (Suppl_1) ◽  
Author(s):  
Georgios Amanakis ◽  
Junhui Sun ◽  
Maria Fergusson ◽  
Chengyu Liu ◽  
Jeff D Molkentin ◽  
...  

Cyclophilin-D (CypD) is a well-known regulator of the mitochondrial permeability transition pore (PTP), the main effector of cardiac ischemia/reperfusion (I/R) injury characterized by oxidative stress and calcium overload. However, the mechanism by which CypD activates PTP is poorly understood. Cysteine 202 of CypD (C202) is highly conserved across species and can undergo redox-sensitive post-translational modifications, such as S-nitrosylation and oxidation. To study the importance of C202, we developed a knock-in mouse model using CRISPR where CypD-C202 was mutated to a serine (C202S). Hearts from these mice are protected against I/R injury. We found C202 to be abundantly S-palmitoylated under baseline conditions while C202 was de-palmitoylated during ischemia in WT hearts. To further investigate the mechanism of de-palmitoylation during ischemia, we considered the increase of matrix calcium, oxidative stress and uncoupling of ATP synthesis from the electron transport chain. We tested the effects of these conditions on the palmitoylation of CypD in isolated cardiac mitochondria. The palmitoylation of CypD was assessed using a resin-assisted capture (Acyl-RAC). We report that oxidative stress (phenylarsenide) and uncoupling (CCCP) had no effect on CypD palmitoylation (p>0.05, n=3 and n=7 respectively). However, calcium overload led to de-palmitoylation of CypD to the level observed at the end ischemia (1±0.10 vs 0.63±0.09, p=0.012, n=9). To further test the hypothesis that calcium regulates S-palmitoylation of CypD we measured S-palmitoylation of CypD in non-perfused heart lysates from global germline mitochondrial calcium uniporter knock-out mice (MCU-KO), which have reduced mitochondrial calcium and we found an increase in S-palmitoylation of CypD (WT 1±0.04 vs MCU-KO 1.603±0.11, p<0.001, n=6). The data are consistent with the hypothesis that C202 is important for the CypD mediated activation of PTP. Ischemia leads to increased matrix calcium which in turn promotes the de-palmitoylation of CypD on C202. The now free C202 can further be oxidized during reperfusion leading to the activation of PTP. Thus, S-palmitoylation and oxidation of CypD-C202 possibly target CypD to the PTP, making them potent regulators of cardiac I/R injury.


2019 ◽  
Vol 317 (3) ◽  
pp. C584-C599
Author(s):  
Kurt D. Marshall ◽  
Paula J. Klutho ◽  
Lihui Song ◽  
Maike Krenz ◽  
Christopher P. Baines

Opening of the mitochondrial permeability transition (MPT) pore leads to necrotic cell death. Excluding cyclophilin D (CypD), the makeup of the MPT pore remains conjecture. The purpose of these experiments was to identify novel MPT modulators by analyzing proteins that associate with CypD. We identified Fas-activated serine/threonine phosphoprotein kinase domain-containing protein 1 (FASTKD1) as a novel CypD interactor. Overexpression of FASTKD1 protected mouse embryonic fibroblasts (MEFs) against oxidative stress-induced reactive oxygen species (ROS) production and cell death, whereas depletion of FASTKD1 sensitized them. However, manipulation of FASTKD1 levels had no effect on MPT responsiveness, Ca2+-induced cell death, or antioxidant capacity. Moreover, elevated FASTKD1 levels still protected against oxidative stress in CypD-deficient MEFs. FASTKD1 overexpression decreased Complex-I-dependent respiration and ΔΨm in MEFs, effects that were abrogated in CypD-null cells. Additionally, overexpression of FASTKD1 in MEFs induced mitochondrial fragmentation independent of CypD, activation of Drp1, and inhibition of autophagy/mitophagy, whereas knockdown of FASTKD1 had the opposite effect. Manipulation of FASTKD1 expression also modified oxidative stress-induced caspase-3 cleavage yet did not alter apoptotic death. Finally, the effects of FASTKD1 overexpression on oxidative stress-induced cell death and mitochondrial morphology were recapitulated in cultured cardiac myocytes. Together, these data indicate that FASTKD1 supports mitochondrial homeostasis and plays a critical protective role against oxidant-induced death.


2000 ◽  
Vol 28 (2) ◽  
pp. 170-177 ◽  
Author(s):  
A. P. Halestrap ◽  
E. Doran ◽  
J. P. Gillespie ◽  
A. O'Toole

Mitochondria play a central role in both apoptosis and necrosis through the opening of the mitochondrial permeability transition pore (MPTP). This is thought to be formed through a Ca2+-triggered conformational change of the adenine nucleotide translocase (ANT) bound to matrix cyclophilin-D and we have now demonstrated this directly by reconstitution of the pure components. Opening of the MPTP causes swelling and uncoupling of mitochondria which, unrestrained, leads to necrosis. In ischaemia/reperfusion injury of the heart we have shown MPTP opening directly. Recovery of hearts correlates with subsequent closure, and agents that prevent opening or enhance closure protect from injury. Transient MPTP opening may also be involved in apoptosis by initially causing swelling and rupture of the outer membrane to release cytochrome c (cyt c), which then activates the caspase cascade and sets apoptosis in motion. Subsequent MPTP closure allows ATP levels to be maintained, ensuring that cell death remains apoptotic rather than necrotic. Apoptosis in the hippocampus that occurs after a hypoglycaemic or ischaemic insult is triggered by this means. Other apoptotic stimuli such as cytokines or removal of growth factors also involve mitochondrial cyt c release, but here there is controversy over whether the MPTP is involved. In many cases cyt c release is seen without any mitochondrial depolarization, suggesting that the MPTP does not open. Recent data of our own and others have revealed a specific outer-membrane cyt c-release pathway involving porin that does not release other intermembrane proteins such as adenylate kinase. This is opened by pro-apototic members of the Bcl-2 family such as BAX and prevented by anti-apoptotic members such as Bcl-xL. Our own data suggest that this pathway may interact directly with the ANT in the inner membrane at contact sites.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Costanza Savino ◽  
PierGiuseppe Pelicci ◽  
Marco Giorgio

Mitochondrial-mediated oxidative stress and apoptosis play a crucial role in neurodegenerative disease and aging. Both mitochondrial permeability transition (PT) and swelling of mitochondria have been involved in neurodegeneration. Indeed, knockout mice for cyclophilin-D (Cyc-D), a key regulatory component of the PT pore (PTP) that triggers mitochondrial swelling, resulted to be protected in preclinical models of multiple sclerosis (MS), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS). However, how neuronal stress is transduced into mitochondrial oxidative stress and swelling is unclear. Recently, the aging determinant p66Shc that generates H2O2reacting with cytochrome c and induces oxidation of PTP and mitochondrial swelling was found to be involved in MS and ALS. To investigate the role of p66Shc/PTP pathway in neurodegeneration, we performed experimental autoimmune encephalomyelitis (EAE) experiments in p66Shc knockout mice (p66Shc−/−), knock out mice for cyclophilin-D (Cyc-D−/−), and p66Shc Cyc-D double knock out (p66Shc/Cyc-D−/−) mice. Results confirm that deletion of p66Shc protects from EAE without affecting immune response, whereas it is not epistatic to the Cyc-D mutation. These findings demonstrate that p66Shc contributes to EAE induced neuronal damage most likely through the opening of PTP suggesting that p66Shc/PTP pathway transduces neurodegenerative stresses.


1998 ◽  
Vol 336 (2) ◽  
pp. 287-290 ◽  
Author(s):  
Kuei WOODFIELD ◽  
Alexander RÜCK ◽  
Dieter BRDICZKA ◽  
Andrew P. HALESTRAP

A fusion protein between cyclophilin-D (CyP-D) and glutathione S-transferase (GST) was shown to bind to purified liver inner mitochondrial membranes (IMMs) in a cyclosporin A (CsA)-sensitive manner. Binding was enhanced by diamide treatment of the IMMs. Immobilized GST–CyP-D avidly bound a single 30 kDa protein present in Triton X-100-solubilized IMMs; immunoblotting showed this to be the adenine nucleotide translocase (ANT). Binding was prevented by pretreatment of the CyP-D with CsA, but not with cyclosporin H. Purified ANT also bound specifically to GST–CyP-D, but porin did not, even in the presence of ANT.


Sign in / Sign up

Export Citation Format

Share Document