Effects of Chronic Administration of Melatonin on Spatial Learning Ability and Long-term Potentiation in Lead-exposed and Control Rats

2009 ◽  
Vol 22 (1) ◽  
pp. 70-75 ◽  
Author(s):  
Xiu-Jing CAO ◽  
Ming WANG ◽  
Wei-Heng CHEN ◽  
Da-Miao ZHU ◽  
Jia-Qi SHE ◽  
...  
Neuroscience ◽  
1996 ◽  
Vol 74 (2) ◽  
pp. 331-339 ◽  
Author(s):  
F.H Brucato ◽  
E.D Levin ◽  
D.D Mott ◽  
D.V Lewis ◽  
W.A Wilson ◽  
...  

1998 ◽  
Vol 251 (1) ◽  
pp. 41-44 ◽  
Author(s):  
G Richter-Levin ◽  
K.L Thomas ◽  
S.P Hunt ◽  
T.V.P Bliss

2002 ◽  
Vol 87 (6) ◽  
pp. 3018-3032 ◽  
Author(s):  
Nikolai Otmakhov ◽  
John E. Lisman

The molecular mechanisms that underlie the maintenance of long-term potentiation (LTP) remain unclear. We have examined the influence of postsynaptic cAMP-dependent processes on LTP maintenance in CA1 hippocampal cells. After LTP induction, drugs affecting cAMP-dependent processes were perfused into the cell through a patch pipette. A cAMP analogue, Rp-cAMPS (4 mM), dramatically decreased the amplitude of potentiated synaptic responses. The amplitude of responses in the control pathway was also decreased but to a lesser extent, indicating a specific effect on the potentiation process. This specific effect was not due to the larger amplitude of potentiated responses, was not use-dependent and, unlike other factors that affect LTP maintenance, did not depend on the delay (2, 10, or 25 min) of drug application after LTP induction. Lower concentrations of Rp-cAMPS (1.0 and 0.4 mM) also produced an inhibitory effect but reduced the LTP and control pathways comparably. One possible action of Rp-cAMPS is competitive inhibition of protein kinase A (PKA). Surprisingly, a potent and noncompetitive PKA inhibitor, regulatory type II subunit of PKA, produced only a weak depression of potentiated and control responses indicating there must be other targets for Rp-cAMPS. Moreover, Sp-8-OH-cAMPS, which is an activator of PKA, and Rp-8-OH-cAMPS, which is a weak inhibitor of PKA, both produced effects similar to those of Rp-cAMPS. We conclude that there are postsynaptic cyclic nucleotide-dependent processes that can specifically alter the mechanisms that maintain LTP and that are not primarily dependent on PKA.


1995 ◽  
Vol 686 (1) ◽  
pp. 107-110 ◽  
Author(s):  
Giovanni Diana ◽  
Maria Rosaria Domenici ◽  
Arsenia Scotti de Carolis ◽  
Alberto Loizzo ◽  
Stefano Sagratella

2004 ◽  
Vol 84 (1) ◽  
pp. 87-136 ◽  
Author(s):  
M. A. LYNCH

Lynch, MA. Long-Term Potentiation and Memory. Physiol Rev 84: 87–136, 2004; 10.1152/physrev.00014.2003.—One of the most significant challenges in neuroscience is to identify the cellular and molecular processes that underlie learning and memory formation. The past decade has seen remarkable progress in understanding changes that accompany certain forms of acquisition and recall, particularly those forms which require activation of afferent pathways in the hippocampus. This progress can be attributed to a number of factors including well-characterized animal models, well-defined probes for analysis of cell signaling events and changes in gene transcription, and technology which has allowed gene knockout and overexpression in cells and animals. Of the several animal models used in identifying the changes which accompany plasticity in synaptic connections, long-term potentiation (LTP) has received most attention, and although it is not yet clear whether the changes that underlie maintenance of LTP also underlie memory consolidation, significant advances have been made in understanding cell signaling events that contribute to this form of synaptic plasticity. In this review, emphasis is focused on analysis of changes that occur after learning, especially spatial learning, and LTP and the value of assessing these changes in parallel is discussed. The effect of different stressors on spatial learning/memory and LTP is emphasized, and the review concludes with a brief analysis of the contribution of studies, in which transgenic animals were used, to the literature on memory/learning and LTP.


Sign in / Sign up

Export Citation Format

Share Document