transgenic animals
Recently Published Documents


TOTAL DOCUMENTS

1043
(FIVE YEARS 121)

H-INDEX

72
(FIVE YEARS 5)

2022 ◽  
pp. 171-208
Author(s):  
Pankaj Singh ◽  
Pradeep Kumar Singh ◽  
Ram Lakhan Singh
Keyword(s):  

2021 ◽  
pp. 3235-3248
Author(s):  
Wilkister Nakami ◽  
Ambrose Ng'eno Kipyegon ◽  
James Nguhiu-Mwangi ◽  
Christian Tiambo ◽  
Stephen Kemp

Background and Aim: Spermatogonial stem cells (SSCs) have previously been isolated from animals' testes, cultured in vitro, and successfully transplanted into compatible recipients. The SSC unique characteristic has potential for exploitation as a reproductive tool and this can be achieved through SSC intratesticular transplantation to surrogate sires. Here, we aimed at comprehensively analyzing published data on in vitro maintenance of SSC isolated from the testes of livestock animals and their applications. Materials and Methods: The literature search was performed in PubMed, Science Direct, and Google Scholar electronic databases. Data screening was conducted using Rayyan Intelligent Systematic Review software (https://www.rayyan.ai/). Duplicate papers were excluded from the study. Abstracts were read and relevant full papers were reviewed for data extraction. Results: From a total of 4786 full papers screened, data were extracted from 93 relevant papers. Of these, eight papers reported on long-term culture conditions (>1 month) for SSC in different livestock species, 22 papers on short-term cultures (5-15 days), 10 papers on transfection protocols, 18 papers on transplantation using different methods of preparation of livestock recipients, and five papers on donor-derived spermatogenesis. Conclusion: Optimization of SSC long-term culture systems has renewed the possibilities of utilization of these cells in gene-editing technologies to develop transgenic animals. Further, the development of genetically deficient recipients in the endogenous germline layer lends to a future possibility for the utilization of germ cell transplantation in livestock systems.


2021 ◽  
Vol 219 (2) ◽  
Author(s):  
Kerry L. Hilligan ◽  
Sivaranjani Namasivayam ◽  
Chad S. Clancy ◽  
Danielle O’Mard ◽  
Sandra D. Oland ◽  
...  

In addition to providing partial protection against pediatric tuberculosis, vaccination with bacille Calmette-Guérin (BCG) has been reported to confer nonspecific resistance to unrelated pulmonary pathogens, a phenomenon attributed to the induction of long-lasting alterations within the myeloid cell compartment. Here, we demonstrate that intravenous, but not subcutaneous, inoculation of BCG protects human-ACE2 transgenic mice against lethal challenge with SARS-CoV-2 (SCV2) and results in reduced viral loads in non-transgenic animals infected with an α variant. The observed increase in host resistance was associated with reductions in SCV2-induced tissue pathology, inflammatory cell recruitment, and cytokine production that multivariate analysis revealed as only partially related to diminished viral load. We propose that this protection stems from BCG-induced alterations in the composition and function of the pulmonary cellular compartment that impact the innate response to the virus and ensuing immunopathology. While intravenous BCG vaccination is not a clinically acceptable practice, our findings provide an experimental model for identifying mechanisms by which nonspecific stimulation of the pulmonary immune response promotes host resistance to SCV2 lethality.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. 533-533
Author(s):  
Cara Hardy ◽  
Ramalakshmi Ramasamy ◽  
Dawn Rosenberg ◽  
Philip Scarpa ◽  
Xiangyou Hu ◽  
...  

Abstract Alzheimer’s disease (AD) is a devastating disorder primarily affecting older adults and is the most common neurodegenerative disease in the US. More than one in three AD patients experience AD-associated urinary dysfunction (ADUD), which directly contributes to their institutionalization. While ADUD has been clinically regarded as a result of poor cognitive control over urinary function, the physiology underlying loss of urinary control remains unknown. We hypothesize that amyloidosis in the CNS results in pathologic changes in urinary structure and function. Tg-APP/PS1DE9 mice were used before plaque deposition (4-6 months) and after plaque accumulation (8-10 months) and compared to WT littermates. Behavioral assays (open field testing and voiding spot assays) were performed to assess cortical function. Pressure-flow cystometry was conducted under urethane anesthesia to assess autonomic control of urinary function without cortical influence. Pharmacomyography of bladder strips was used to determine tissue-level changes in the absence of CNS input. In Tg-APP/PS1DE9 mice, plaque accumulation resulted in significant cystometric changes to voiding phase parameters, but not storage phase parameters. Pharmacologic studies showed decreased sensitivity to adrenergic stimulation without change in muscarinic sensitivity. Behavioral assays demonstrated significant differences between transgenic animals and WT in locomotion and voiding spot sizes. We interpret our data to support AD-related pathology of Aβ accumulation results in a distinct urinary phenotype in our model, analogous to the ADUD observed in AD patients. Establishing and verifying models of ADUD may improve the efficacy of treating ADUD and increase quality of life for patients and their caregivers.


2021 ◽  
pp. 395-410
Author(s):  
William C. Eastin ◽  
Raymond W. Tennant

2021 ◽  
Vol 14 (12) ◽  
pp. 1218
Author(s):  
Christian Viel ◽  
Adrian T. Brandtner ◽  
Alexander Weißhaar ◽  
Alina Lehto ◽  
Marius Fuchs ◽  
...  

Glucose hypometabolism, mitochondrial dysfunction, and cholinergic deficits have been reported in early stages of Alzheimer’s disease (AD). Here, we examine these parameters in TgF344-AD rats, an Alzheimer model that carries amyloid precursor protein and presenilin-1 mutations, and of wild type F344 rats. In mitochondria isolated from rat hippocampi, we found reductions of complex I and oxidative phosphorylation in transgenic rats. Further impairments, also of complex II, were observed in aged (wild-type and transgenic) rats. Treatment with a “cocktail” containing magnesium orotate, benfotiamine, folic acid, cyanocobalamin, and cholecalciferol did not affect mitochondrial activities in wild-type rats but restored diminished activities in transgenic rats to wild-type levels. Glucose, lactate, and pyruvate levels were unchanged by age, genetic background, or treatment. Using microdialysis, we also investigated extracellular concentrations of acetylcholine that were strongly reduced in transgenic animals. Again, ACh levels in wild-type rats did not change upon treatment with nutrients, whereas the cocktail increased hippocampal acetylcholine levels under physiological stimulation. We conclude that TgF344-AD rats display a distinct mitochondrial and cholinergic dysfunction not unlike the findings in patients suffering from AD. This dysfunction can be partially corrected by the application of the “cocktail” which is particularly active in aged rats. We suggest that the TgF344-AD rat is a promising model to further investigate mitochondrial and cholinergic dysfunction and potential treatment approaches for AD.


Nutrients ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 4218
Author(s):  
Jérôme Lamontagne-Proulx ◽  
Katherine Coulombe ◽  
Fadil Dahhani ◽  
Mélissa Côté ◽  
Cédric Guyaz ◽  
...  

The aggregation of alpha-synuclein protein (αSyn) is a hallmark of Parkinson’s disease (PD). Considerable evidence suggests that PD involves an early aggregation of αSyn in the enteric nervous system (ENS), spreading to the brain. While it has previously been reported that omega-3 polyunsaturated fatty acids (ω-3 PUFA) acts as neuroprotective agents in the brain in murine models of PD, their effect in the ENS remains undefined. Here, we studied the effect of dietary supplementation with docosahexaenoic acid (DHA, an ω-3 PUFA), on the ENS, with a particular focus on enteric dopaminergic (DAergic) neurons. Thy1-αSyn mice, which overexpress human αSyn, were fed ad libitum with a control diet, a low ω-3 PUFA diet or a diet supplemented with microencapsulated DHA and then compared with wild-type littermates. Our data indicate that Thy1-αSyn mice showed a lower density of enteric dopaminergic neurons compared with non-transgenic animals. This decrease was prevented by dietary DHA. Although we found that DHA reduced microgliosis in the striatum, we did not observe any evidence of peripheral inflammation. However, we showed that dietary intake of DHA promoted a build-up of ω-3 PUFA-derived endocannabinoid (eCB)-like mediators in plasma and an increase in glucagon-like peptide-1 (GLP-1) and the redox regulator, Nrf2 in the ENS. Taken together, our results suggest that DHA exerts neuroprotection of enteric DAergic neurons in the Thy1-αSyn mice, possibly through alterations in eCB-like mediators, GLP-1 and Nrf2.


2021 ◽  
Author(s):  
Brenda Moore ◽  
Yona Levites ◽  
Guilian Xu ◽  
Hailey Hampton ◽  
Munir F Adamo ◽  
...  

Abstract Background Seeding of pathology related to Alzheimer’s disease (AD) and Lewy body disease (LBD) by the injection of tissue homogenates, purified proteins, or recombinant proteins into model systems has revealed prion-like seeding of the protein aggregates that define these disorders. Most commonly these homogenates are injected into adult mice stereotaxically. Injection of brain lysates into newborn mice represents an alternative approach of delivering seeds that could be used to direct the evolution of amyloid-β (Aβ) pathology co-mixed with either tau or α-synuclein (αSyn) pathology in vulnerable mouse models. Methods Homogenates of human pre-frontal cortex were prepared and injected into the lateral ventricles of newborn (P0) mice expressing a mutant humanized amyloid precursor protein (APP), human P301L tau, human wild type αSyn, or combinations thereof. The injected brain homogenates were prepared from AD and AD/LBD cases displaying variable degrees of Aβ pathology and co-existing tau and αSyn deposits. Behavioral assessments of APP transgenic mice injected with AD brain lysates were conducted. Results We observed that the lysates from the brains of individuals with AD (Aβ+, tau+), AD/LBD (Aβ+, tau+, αSyn+), or Pathological Aging (Aβ+, tau-, αSyn-) efficiently seeded diffuse Aβ deposits, composed primarily of Aβ42 peptides, in our transgenic host animals. Moderate seeding of cerebral amyloid angiopathy (CAA) was also observed. No animal of any genotype developed discernable tau or αSyn pathology. Fear conditioning, cognitive, outcome was not significantly altered in APP transgenic animals injected with AD brain lysates compared to nontransgenic controls. Conclusions These findings demonstrate that diffuse Aβ pathology, which is a common feature of AD, AD/LBD, and PA brains, can be easily induced by injecting newborn APP mice with crude brain homogenates. Seeding of tau or αSyn comorbidities was disappointingly inefficient in the models we used, indicating additional methodological refinement will be needed to efficiently seed AD or AD/LBD mixed pathologies by injecting newborn mice.


2021 ◽  
Author(s):  
Benjamin E. Low ◽  
Vishnu Hosur ◽  
Simon Lesbirel ◽  
Michael V. Wiles

Abstract The development of mouse models of human disease and synthetic biology research by targeted transgenesis of large DNA constructs represent a significant genetic engineering hurdle. We developed an efficient, precise, single-copy integration of large transgenes directly into zygotes using multiple mouse genetic backgrounds. We used in vivo Bxb1 mediated recombinase-mediated cassette exchange (RMCE) with a transgene “landing pad” composed of dual heterologous Bxb1 attachment (att) sites in cis, within the Gt(ROSA)26Sor safe harbor locus. RMCE of donor was achieved by microinjection of vector DNA carrying cognate attachment sites flanking the donor transgene with Bxb1-integrase mRNA. This approach achieves perfect vector-free integration of donor constructs at efficiencies >40% with up to ~43kb transgenes. Coupled with a nanopore-based Cas9-targeted sequencing (nCATS), complete verification of precise insertion sequence was achieved. As a proof-of-concept we describe the development of C57BL/6J and NSG Krt18-ACE2 models for SARS-CoV2 research with verified heterozygous N1 animals within ~4 months. Additionally, we created a series of mice with diverse backgrounds carrying a single att site including FVB/NJ, PWK/PhJ, NOD/ShiLtJ, CAST/EiJ and DBA/2J allowing for rapid transgene insertion. Combined, this system enables predictable, rapid development combined with simplified characterization of precisely targeted transgenic animals across multiple genetic backgrounds.


2021 ◽  
Author(s):  
Andrew C. Zelhof ◽  
Johnathan C Rylee ◽  
Alexandra Nin-Velez ◽  
Simpla Mahato ◽  
Kennedy J Helms ◽  
...  

CRISPR/Cas9 genome editing has now expanded to many insect species, including Tribolium castaneum. However, compared to Drosophila melanogaster, the CRISPR toolkit of T. castaneum is limited. A particularly apparent gap is the lack of Cas9 transgenic animals, which generally offer higher editing efficiency. We address this by creating and testing transgenic beetles expressing Cas9. We generated two different constructs bearing basal heat shock promoter-driven Cas9, two distinct 3 UTRs, and one containing Cas9 fused to EGFP by a T2A peptide. For each construct, we were able to generate a line that is homozygous viable, though variable reductions in reproductive success with each construct were noted. Analyses of Cas9 activity in each transgenic line demonstrated that both designs are capable of inducing CRISPR- mediated changes in the genome in the absence of heat induction. Overall, these resources enhance the accessibility of CRISPR/Cas9 genome editing for the Tribolium research community and provide a benchmark against which to compare future transgenic Cas9 lines.


Sign in / Sign up

Export Citation Format

Share Document