kinase pathway
Recently Published Documents


TOTAL DOCUMENTS

2811
(FIVE YEARS 226)

H-INDEX

141
(FIVE YEARS 8)

2022 ◽  
Vol 12 ◽  
Author(s):  
Satoshi Yamaguchi ◽  
Dongxiao Zhang ◽  
Akihiro Katayama ◽  
Naoko Kurooka ◽  
Ryosuke Sugawara ◽  
...  

MicroRNAs expressed in adipocytes are involved in transcriptional regulation of target mRNAs in obesity, but miRNAs critically involved in this process is not well characterized. Here, we identified upregulation of miR-221-3p and miR-222-3p in the white adipose tissues in C57BL/6 mice fed with high fat-high sucrose (HFHS) chow by RNA sequencing. Mir221 and Mir222 are paralogous genes and share the common seed sequence and Mir221/222AdipoKO mice fed with HFHS chow demonstrated resistance to the development of obesity compared with Mir221/222flox/y. Ddit4 is a direct target of Mir221 and Mir222, and the upregulation of Ddit4 in Mir221/222AdipoKO was associated with the suppression of TSC2 (tuberous sclerosis complex 2)/mammalian target of rapamycin complex 1 (mTORC1)/S6K (ribosomal protein S6 kinase) pathway. The overexpression of miR-222-3p linked to enhanced adipogenesis, and it may be a potential candidate for miRNA-based therapy.


2021 ◽  
Vol 11 ◽  
Author(s):  
Katrin E. Hostettler ◽  
Elisa Casañas Quintana ◽  
Michael Tamm ◽  
Spasenija Savic Prince ◽  
Gregor Sommer ◽  
...  

Langerhans cell histiocytosis (LCH) commonly co-occurs with additional myeloid malignancies. The introduction of targeted therapies, blocking “driver” mutations (e.g., BRAF V600E), enabled long-term remission in patients with LCH. The effect of BRAF inhibition on the course and the prognosis of co-existing clonal hematopoiesis is poorly understood. We report on a 61-year-old patient with systemic BRAF V600E positive LCH and concomitant BRAF wild-type (wt) clonal cytopenia of unknown significance (CCUS) with unfavorable somatic mutations including loss of function (LOF) of NF1. While manifestations of LCH improved after blocking BRAF by dabrafenib treatment, the BRAF wt CCUS progressed to acute myeloid leukemia (AML). The patient eventually underwent successful allogeneic hematopoietic stem cell transplantation (HSCT). We performed an in-depth analyzes of the clonal relationship of CCUS and the tissue affected by LCH by using next-generation sequencing (NGS). The findings suggest activation of the mitogen-activated protein (MAP) kinase pathway in the CCUS clone due to the presence of the RAS deregulating NF1 mutations and wt BRAF, which is reportedly associated with paradoxical activation of CRAF and hence MEK. Patients with LCH should be carefully screened for potential additional clonal hematological diseases. NGS can help predict outcome of the latter in case of BRAF inhibition. Blocking the MAP kinase pathway further downstream (e.g., by using MEK inhibitors) or allogeneic HSCT may be options for patients at risk.


2021 ◽  
Vol 12 ◽  
Author(s):  
Han Wu ◽  
Shuxian Chen ◽  
Aifen Li ◽  
Kangyuan Shen ◽  
Shuting Wang ◽  
...  

Systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA) are two common multisystem autoimmune diseases that share, among others, many clinical manifestations and serological features. The role of long non-coding RNAs (lncRNAs) has been of particular interest in the pathogenesis of autoimmune diseases. Here, we aimed to summarize the roles of lncRNAs as emerging novel biomarkers and therapeutic targets in SLE and RA. We conducted a narrative review summarizing original articles on lncRNAs associated with SLE and RA, published until November 1, 2021. Based on the studies on lncRNA expression profiles in samples (including PBMCs, serum, and exosomes), it was noted that most of the current research is focused on investigating the regulatory mechanisms of these lncRNAs in SLE and/or RA. Several lncRNAs have been hypothesized to play key roles in these diseases. In SLE, lncRNAs such as GAS5, NEAT1, TUG1, linc0949, and linc0597 are dysregulated and may serve as emerging novel biomarkers and therapeutic targets. In RA, many validated lncRNAs, such as HOTAIR, GAS5, and HIX003209, have been identified as promising novel biomarkers for both diagnosis and treatment. The shared lncRNAs, for example, GAS5, may participate in SLE pathogenesis through the mitogen-activated protein kinase pathway and trigger the AMP-activated protein kinase pathway in RA. Here, we summarize the data on key lncRNAs that may drive the pathogenesis of SLE and RA and could potentially serve as emerging novel biomarkers and therapeutic targets in the coming future.


Author(s):  
Sridhar B T ◽  
Kumara M N ◽  
Padma T ◽  
Thimmaiah K N ◽  
Houghton PJ

Akt plays an important role in many types of cancers and has been identified as a therapeutic target. Several types of cancers have posed a major threat to human health. Conventional treatments suffer from limitations of side effects, poor responses and drugresistance. Phenoxazines have shown diverse biological activities and promising agents in anti-cancer, anti-viral and antibacterial therapy. In this study, we evaluated the effect of phenoxazine derivatives on rhabdomyosarcoma cells. Hydrophobic phenoxazines shut down Akt/mTOR/p70S6/S6 kinase pathway and induce apoptosis in rhabdomyosarcoma cells. There is activation of Akt pathway in rhabdomyosarcoma cell lines which have tumorigenic potential. These cell lines are sensitive to phenoxazines. The phenoxazine derivatives are compared for their ability to inhibit Akt phosphorylation in these cells. The lipophilicity of these compounds increased significantly by increasing the chain length to (-CH2)5 or (-CH2)6 from the corresponding (-CH2)3 or (-CH2)4 at N10 -position of the phenoxazine ring. The ability of various phenoxazine derivatives to inhibit Akt phosphorylation in rhabdomyosarcoma cells follows the order: N10-hexyl > N10-pentyl > N10-butyl > N10-propyl. Within the series, -Cl in C-2 position on the phenoxazine ring demonstrated a higher potency compared to phenoxazines with –H in C-2 position, suggesting that chlorine is playing a critical role on the growth inhibition.


2021 ◽  
Vol 12 ◽  
Author(s):  
Nan Lan ◽  
Shuting Ye ◽  
Chengcheng Hu ◽  
Zhiling Chen ◽  
Jun Huang ◽  
...  

Mitogen-activated protein (MAP) kinase pathways function as signaling hubs that are integral for many essential cellular processes, including sexual development. The molecular mechanisms and cross-talk between PR and CWI MAP kinase pathways have been extensively studied during asexual development. However, if these can be extended to sexual development remains elusive. By analyzing genome-wide transcriptional responses to deletion of each of two MAP kinase coding genes mak-2 (PR-MAP kinase pathway) and mak-1 (CWI-MAP kinase pathway) in Neurospora crassa during protoperithecium formation, 430 genes co-regulated by the MAK-1 and MAK-2 proteins were found, functionally enriched at integral components of membrane and oxidoreductase. These genes include 13 functionally known genes participating in sexual development (app, poi-2, stk-17, fsd-1, vsd-8, and NCU03863) and melanin synthesis (per-1, pkh-1, pkh-2, mld-1, scy-1, trn-2, and trn-1), as well as a set of functionally unknown genes. Phenotypic analysis of deletion mutants for the functionally unknown genes revealed that 12 genes were essential for female fertility. Among them, single-gene deletion mutants for NCU07743 (named as pfd-1), NCU02250 (oli), and NCU05948 (named as pfd-2) displayed similar protoperithecium development defects as the Δmak-1 and Δmak-2 mutants, failing to form protoperithecium. Western blotting analysis showed that both phosphorylated and total MAK-1 proteins were virtually abolished in the Δnrc-1, Δmek-2, and Δmak-2 mutants, suggesting that the posttranscriptional regulation of MAK-1 is dependent on the PR-MAP kinase pathway during the protoperithecium development. Taken together, this study revealed the regulatory roles and cross-talk between PR and CWI-MAP kinase pathways during protoperithecium development.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jérôme Razanamahery ◽  
Anne Roggy ◽  
Jean-François Emile ◽  
Alexandre Malakhia ◽  
Zaher Lakkis ◽  
...  

Erdheim–Chester disease is a rare histiocytosis characterized by iconic features associated with compatible histology. Most patients have somatic mutations in the MAP-kinase pathway gene, and the mutations occur in CD14+ monocytes. Differentiation of the myeloid lineage plays a central role in the pathogenesis of histiocytosis. Monocytes are myeloid-derived white blood cells, divided into three subsets, but only the CD14++CD16− “classical monocyte” can differentiate into dendritic cells and tissue macrophages. Since most mutations occur in CD14+ cells and since ECD patients have a particular monocytic phenotype resembling CMML, we studied the correlation between disease activity and monocytic subset distribution during the course of a severe vascular form of ECD requiring liver transplantation. During early follow-up, increased CD14++CD16− “classical monocyte” associated with decreased CD14lowCD16++ “non-classical monocyte” correlated with disease activity. Further studies are needed to confirm the use of monocyte as a marker of disease activity in patients with ECD.


Sign in / Sign up

Export Citation Format

Share Document