Very low-temperature magnetic structure in Ce3Al11

1997 ◽  
Vol 234-236 ◽  
pp. 687-688 ◽  
Author(s):  
J.X. Boucherle ◽  
F. Givord ◽  
G. Lapertot ◽  
J. Schweizer ◽  
S. Pujol ◽  
...  
1980 ◽  
Vol 41 (C5) ◽  
pp. C5-177-C5-180
Author(s):  
J. Flouquet ◽  
P. Haen ◽  
F. Holtzberg ◽  
F. Lapierre ◽  
J. M. Mignot ◽  
...  

1990 ◽  
Vol 55 (4) ◽  
pp. 890-895
Author(s):  
Rudolf Zahradník ◽  
B. Andes Hess

HFO and HClO (fluorosyl and chlorosyl hydrides) and isomeric molecules HOF and HOCl (hypofluorous and hypochlorous acids) have been studied theoretically. On the basis of nonempiracal quantum chemical calculations (MP2, MP4 and CCD/6-311G**) geometry, energy and vibrational characteristics are analyzed and it is concluded that there is a poor chance to observe formation of HFO. Possibly, bombardment of HF in a solid matrix by 16O could lead at very low temperature to HFO.


Solar RRL ◽  
2021 ◽  
pp. 2100108
Author(s):  
Shih-Chi Yang ◽  
Jordi Sastre ◽  
Maximilian Krause ◽  
Xiaoxiao Sun ◽  
Ramis Hertwig ◽  
...  

2015 ◽  
Vol 1123 ◽  
pp. 73-77 ◽  
Author(s):  
Yohanes Edi Gunanto ◽  
K. Sinaga ◽  
B. Kurniawan ◽  
S. Poertadji ◽  
H. Tanaka ◽  
...  

The study of the perovskite manganites La0.47Ca0.53Mn1-xCuxO3 with x = 0, 0.06, 0.09, and 0.13 has been done. The magnetic structure was determined using high-resolution neutron scattering at room temperature and low temperature. All samples were paramagnetic at room temperature and antiferromagnetic at low temperature. Using the SQUID Quantum Design, the samples showed that the doping of the insulating antiferromagnetic phase La0.47Ca0.53MnO3 with Cu doping resulted in the temperature transition from an insulator to metal state, and an antiferromagnetic to paramagnetic phase. The temperature transition from an insulator to metal state ranged from 23 to 100 K and from 200 to 230 K for the transition from an antiferromagnetic to paramagnetic phase.


2021 ◽  
Vol 103 (13) ◽  
Author(s):  
N. Qureshi ◽  
A. R. Wildes ◽  
C. Ritter ◽  
B. Fåk ◽  
S. X. M. Riberolles ◽  
...  

2015 ◽  
Vol 115 (4) ◽  
Author(s):  
M. Taupin ◽  
G. Knebel ◽  
T. D. Matsuda ◽  
G. Lapertot ◽  
Y. Machida ◽  
...  

2021 ◽  
Vol 1028 ◽  
pp. 193-198
Author(s):  
Budi Adiperdana ◽  
Nadya Larasati Kartika ◽  
Risdiana

Ising core-shell model was proposed to reconstruct superparamagnetism hysteresis in nano-goethite (α-FeOOH). Core and shell set as antiferromagnetic and paramagnetic state respectively. Core and shell radius varies until the theoretical hysteresis fit with experiment hysteresis. At low temperature, the hysteresis reconstructed nicely with 55% antiferromagnetic core contribution and 45% paramagnetic shell contribution. At high temperature, the core-shell model show unrealistic result compared to the pure paramagnetic state.


Sign in / Sign up

Export Citation Format

Share Document