The Dirichlet problem for semilinear equations in a conical domain

Author(s):  
Mikhail Borsuk ◽  
Vladimir Kondratiev
2019 ◽  
Vol 16 (1) ◽  
pp. 105-140
Author(s):  
Vladimir Gutlyanskii ◽  
Olga Nesmelova ◽  
Vladimir Ryazanov

In two dimensions, we present a new approach to the study of the semilinear equations of the form \(\mathrm{div}[ A(z) \nabla u] = f(u)\), the diffusion term of which is the divergence uniform elliptic operator with measurable matrix functions \(A(z)\), whereas its reaction term \(f(u)\) is a continuous non-linear function. Assuming that \(f(t)/t\to 0\) as \(t\to\infty\), we establish a theorem on existence of weak \(C(\overline D)\cap W^{1,2}_{\rm loc}(D)\) solutions of the Dirichlet problem with arbitrary continuous boundary data in any bounded domains \(D\) without degenerate boundary components. As consequences, we give applications to some concrete model semilinear equations of mathematical physics, arising from modeling processes in anisotropic and inhomogeneous media. With a view to the further development of the theory of boundary-value problems for the semilinear equations, we prove a theorem on the solvability of the Dirichlet problem for the Poisson equation in Jordan domains with arbitrary boundary data that are measurable with respect to the logarithmic capacity.


Author(s):  
Yunru Bai ◽  
Nikolaos S. Papageorgiou ◽  
Shengda Zeng

AbstractWe consider a parametric nonlinear, nonhomogeneous Dirichlet problem driven by the (p, q)-Laplacian with a reaction involving a singular term plus a superlinear reaction which does not satisfy the Ambrosetti–Rabinowitz condition. The main goal of the paper is to look for positive solutions and our approach is based on the use of variational tools combined with suitable truncations and comparison techniques. We prove a bifurcation-type theorem describing in a precise way the dependence of the set of positive solutions on the parameter $$\lambda $$ λ . Moreover, we produce minimal positive solutions and determine the monotonicity and continuity properties of the minimal positive solution map.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Xavier Cabré ◽  
Pietro Miraglio ◽  
Manel Sanchón

AbstractWe consider the equation {-\Delta_{p}u=f(u)} in a smooth bounded domain of {\mathbb{R}^{n}}, where {\Delta_{p}} is the p-Laplace operator. Explicit examples of unbounded stable energy solutions are known if {n\geq p+\frac{4p}{p-1}}. Instead, when {n<p+\frac{4p}{p-1}}, stable solutions have been proved to be bounded only in the radial case or under strong assumptions on f. In this article we solve a long-standing open problem: we prove an interior {C^{\alpha}} bound for stable solutions which holds for every nonnegative {f\in C^{1}} whenever {p\geq 2} and the optimal condition {n<p+\frac{4p}{p-1}} holds. When {p\in(1,2)}, we obtain the same result under the nonsharp assumption {n<5p}. These interior estimates lead to the boundedness of stable and extremal solutions to the associated Dirichlet problem when the domain is strictly convex. Our work extends to the p-Laplacian some of the recent results of Figalli, Ros-Oton, Serra, and the first author for the classical Laplacian, which have established the regularity of stable solutions when {p=2} in the optimal range {n<10}.


Sign in / Sign up

Export Citation Format

Share Document