S.07.04 Genetic variability at IMPA-2, INPP-1 and glycogen synthase kinase (GSK)-3β increases the risk of suicidal behaviour in bipolar patients

2012 ◽  
Vol 22 ◽  
pp. S122
Author(s):  
E. Jimenez ◽  
B. Arias ◽  
M. Mitjans ◽  
J.M. Goikolea ◽  
P.A. Sáiz ◽  
...  
Biology ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 610
Author(s):  
Robin Park ◽  
Andrew L. Coveler ◽  
Ludimila Cavalcante ◽  
Anwaar Saeed

Glycogen synthase kinase-3 beta is a ubiquitously and constitutively expressed molecule with pleiotropic function. It acts as a protooncogene in the development of several solid tumors including pancreatic cancer through its involvement in various cellular processes including cell proliferation, survival, invasion and metastasis, as well as autophagy. Furthermore, the level of aberrant glycogen synthase kinase-3 beta expression in the nucleus is inversely correlated with tumor differentiation and survival in both in vitro and in vivo models of pancreatic cancer. Small molecule inhibitors of glycogen synthase kinase-3 beta have demonstrated therapeutic potential in pre-clinical models and are currently being evaluated in early phase clinical trials involving pancreatic cancer patients with interim results showing favorable results. Moreover, recent studies support a rationale for the combination of glycogen synthase kinase-3 beta inhibitors with chemotherapy and immunotherapy, warranting the evaluation of novel combination regimens in the future.


2018 ◽  
Vol 62 (6) ◽  
pp. e02045-17 ◽  
Author(s):  
Chia-Ling Chen ◽  
Miao-Huei Cheng ◽  
Chih-Feng Kuo ◽  
Yi-Lin Cheng ◽  
Ming-Han Li ◽  
...  

ABSTRACTGroup AStreptococcus(GAS) is an important human pathogen that causes a wide spectrum of diseases, including necrotizing fasciitis and streptococcal toxic shock syndrome. Dextromethorphan (DM), an antitussive drug, has been demonstrated to efficiently reduce inflammatory responses, thereby contributing to an increased survival rate of GAS-infected mice. However, the anti-inflammatory mechanisms underlying DM treatment in GAS infection remain unclear. DM is known to exert neuroprotective effects through an NADPH oxidase-dependent regulated process. In the present study, membrane translocation of NADPH oxidase subunit p47phoxand subsequent reactive oxygen species (ROS) generation induced by GAS infection were significantly inhibited via DM treatment in RAW264.7 murine macrophage cells. Further determination of proinflammatory mediators revealed that DM effectively suppressed inducible nitric oxide synthase (iNOS) expression and NO, tumor necrosis factor alpha, and interleukin-6 generation in GAS-infected RAW264.7 cells as well as in air-pouch-infiltrating cells from GAS/DM-treated mice. GAS infection caused AKT dephosphorylation, glycogen synthase kinase-3β (GSK-3β) activation, and subsequent NF-κB nuclear translocation, which were also markedly inhibited by treatment with DM and an NADPH oxidase inhibitor, diphenylene iodonium. These results suggest that DM attenuates GAS infection-induced overactive inflammation by inhibiting NADPH oxidase-mediated ROS production that leads to downregulation of the GSK-3β/NF-κB/NO signaling pathway.


Cells ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 1120 ◽  
Author(s):  
Manisha Gupte ◽  
Prachi Umbarkar ◽  
Anand Prakash Singh ◽  
Qinkun Zhang ◽  
Sultan Tousif ◽  
...  

Obesity is an independent risk factor for cardiovascular diseases (CVD), including heart failure. Thus, there is an urgent need to understand the molecular mechanism of obesity-associated cardiac dysfunction. We recently reported the critical role of cardiomyocyte (CM) Glycogen Synthase Kinase-3 beta (GSK-3β) in cardiac dysfunction associated with a developing obesity model (deletion of CM-GSK-3β prior to obesity). In the present study, we investigated the role of CM-GSK-3β in a clinically more relevant model of established obesity (deletion of CM-GSK-3β after established obesity). CM-GSK-3β knockout (GSK-3βfl/flCre+/−) and controls (GSK-3βfl/flCre−/−) mice were subjected to a high-fat diet (HFD) in order to establish obesity. After 12 weeks of HFD treatment, all mice received tamoxifen injections for five consecutive days to delete GSK-3β specifically in CMs and continued on the HFD for a total period of 55 weeks. To our complete surprise, CM-GSK-3β knockout (KO) animals exhibited a globally improved glucose tolerance and maintained normal cardiac function. Mechanistically, in stark contrast to the developing obesity model, deleting CM-GSK-3β in obese animals did not adversely affect the GSK-3αS21 phosphorylation (activity) and maintained canonical β-catenin degradation pathway and cardiac function. As several GSK-3 inhibitors are in the trial to treat various chronic conditions, including metabolic diseases, these findings have important clinical implications. Specifically, our results provide critical pre-clinical data regarding the safety of GSK-3 inhibition in obese patients.


PLoS Genetics ◽  
2014 ◽  
Vol 10 (6) ◽  
pp. e1004390 ◽  
Author(s):  
Aishe A. Sarshad ◽  
Martin Corcoran ◽  
Bader Al-Muzzaini ◽  
Laura Borgonovo-Brandter ◽  
Anne Von Euler ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Jingjin Li ◽  
Chonglong Shi ◽  
Zhengnian Ding ◽  
Wenjie Jin

Postoperative cognitive dysfunction (POCD) is a common postoperative central nervous system complication, especially in the elderly. It has been consistently reported that the pathological process of this clinical syndrome is related to neuroinflammation and microglial proliferation. Glycogen synthase kinase 3β (GSK-3β) is a widely expressed kinase with distinct functions in different types of cells. The role of GSK-3β in regulating innate immune activation has been well documented, but as far as we know, its role in POCD has not been fully elucidated. Lithium chloride (LiCl) is a widely used inhibitor of GSK-3β, and it is also the main drug for the treatment of bipolar disorder. Prophylactic administration of lithium chloride (2 mM/kg) can inhibit the expression of proinflammatory mediators in the hippocampus, reduce the hippocampal expression of NF-κB, and increase both the downregulation of M1 microglial-related genes (inducible nitric oxide synthase and CD86) and upregulation of M2 microglial-related genes (IL-10 and CD206), to alleviate the cognitive impairment caused by orthopedic surgery. In vitro, LiCl reversed LPS-induced production of proinflammatory mediators and M1 polarization of microglia. To sum up these results, GSK-3β is a key contributor to POCD and a potential target of neuroprotective strategies.


Sign in / Sign up

Export Citation Format

Share Document