A reference guide to microbial cell surface hydrophobicity based on contact angles

1998 ◽  
Vol 11 (4) ◽  
pp. 213-221 ◽  
Author(s):  
H.C. van der Mei ◽  
R. Bos ◽  
H.J. Busscher
1997 ◽  
Vol 11 (4) ◽  
pp. 388-394 ◽  
Author(s):  
H.C. Van Der Mei ◽  
H.J. Busscher

Physicochemical and structural properties of microbial cell surfaces play an important role in their adhesion to surfaces and are determined by the chemical composition of the outermost cell surface. Many traditional methods used to determine microbial cell wall composition require fractionation of the organisms and consequently do not yield information about the composition of the outermost cell surface. X-ray photoelectron spectroscopy (XPS) measures the elemental composition of the outermost cell surfaces of micro-organisms. The technique requires freeze-drying of the organisms, but, nevertheless, elemental surface concentration ratios of oral streptococcal cell surfaces with peritrichously arranged surface structures showed good relationships with physicochemical properties measured under physiological conditions, such as zeta potentials. Isoelectric points ap-peared to be governed by the relative abundance of oxygen- and nitrogen-containing groups on the cell surfaces. Also, the intrinsic microbial cell-surface hydrophobicity by water contact angles related to the cell-surface composition as by XPS and was highest for strains with an elevated isoelectric point. Inclusion of elemental surface compositions for tufted streptococcal strains caused deterioration of the relationships found. Interestingly, hierarchical cluster analysis on the basis of the elemental surface compositions revealed that, of 36 different streptococcal strains, only four S. rattus as well as nine S. mitis strains were located in distinct groups, well separated from the other streptococcal strains, which were all more or less mixed in one group.


2006 ◽  
Vol 27 (1) ◽  
pp. 23-32 ◽  
Author(s):  
A. Gallardo‐Moreno ◽  
R. Calzado‐Montero ◽  
M. González‐Martín ◽  
C. Pérez‐Giraldo

1998 ◽  
Vol 37 (4-5) ◽  
pp. 527-530 ◽  
Author(s):  
Hilde Lemmer ◽  
George Lind ◽  
Margit Schade ◽  
Birgit Ziegelmayer

Non-filamentous hydrophobic scum bacteria were isolated from scumming wastewater treatment plants (WWTP) by means of adhesion to hydrocarbons. They were characterized with respect to taxonomy, substrate preferences, cell surface hydrophobicity, and emulsification capability. Their role during flotation events is discussed. Rhodococci are selected by hydrolysable substrates and contribute to flotation both by cell surface hydrophobicity and emulsifying activity at long mean cell residence times (MCRT). Saprophytic Acinetobacter strains are able to promote flotation by hydrophobicity and producing emulsifying agents under conditions when hydrophobic substrates are predominant. Hydrogenophaga and Acidovorax species as well as members of the Cytophaga/Flavobacterium group are prone to proliferate under low loading conditions and contribute to flotation mainly by emulsification.


Sign in / Sign up

Export Citation Format

Share Document