Thermostable 1-amylase production by Bacillus licheniformis cells immobilized on polyacrylates with cyclic carbonate groups in the side chain

1998 ◽  
Vol 153 (2) ◽  
pp. 157-162 ◽  
Author(s):  
E. Dobreva ◽  
V. Ivanova ◽  
M. Stefanova ◽  
A. Tonkova ◽  
L. Kabaivanova ◽  
...  
2005 ◽  
Vol 96 (10) ◽  
pp. 1201-1204 ◽  
Author(s):  
Ikram-ul-Haq ◽  
Hamad Ashraf ◽  
Qadeer M.A. ◽  
Javed Iqbal

2017 ◽  
Vol 118 (4) ◽  
Author(s):  
Ali Deljou ◽  
Iman Arezi

Background and Purpose: Amylases are most important industrial enzymes that account for about 30% of the world’s food, feed, fermentation, textile, detergent and cellulosic industries. This study aimed at optimum production of thermostable α-amylase via moderate thermophilic bacterium (Bacillus licheniformis) which was recently isolated from Qinarje Hot spring.Material and Methods: Initially, ability of bacterium for amylase activity was determined by starch hydrolysis test using Gram’s iodine staining. Then bacterial growth pattern and amylase production curves in basal production medium were graphically determined at different time intervals. Finally, effect of different temperature, pH, carbon source, nitrogen source, minerals and inoculum size were studied on bacterial growth and amylase production using turbidimetric and DNS method, respectively.Results: Optimum enzyme production achieved after 84 hours of inoculation from cultures growing at 40 ˚C and pH 9.0 in a medium containing 0.03% (w/v) of CaCl2, compared to the basal medium, results showed that the best enzyme production happened with inoculum size of 4% (v/v). The addition of 1% (w/v) rice husk (as a Carbon source) enhanced enzyme productivity up to 160% and substitution of the peptone and yeast extract with 1% (w/v) of tryptone (as a Nitrogen source) increased the α-amylase production up to 160%.Conclusion: Our findings show that B. licheniformis-AZ2 strain has an ability to produce the thermostable α-amylase which is suitable in starch processing and food industries. To be commercialized, further investigation is required for enhancement of the enzyme production.Keywords: Bacillus licheniformis; Optimization; Basal medium; Agricultural by-products.


2013 ◽  
Vol 760 ◽  
pp. 73-78
Author(s):  
Anima Nanda ◽  
T. Sudhakar ◽  
B.K. Nayak ◽  
J. Prem Kumar

S: - Among the six isolated amylase producing strains,Bacillus licheniformis(B1), the thermostable strain was selected from the soil of a paddy field. Its enzyme productivity and activity were evaluated. The activity of enzyme was calculated as 27.77 IU/ml. Effects of various carbon and organic nitrogen sources, and C/N ratio on enzyme production were examined. Maximum α - amylase production was obtained in medium containing 1% starch. Fructose supported the maximum amylase production among all the sugar studied. Of the organic nitrogen sources tested, peptone was found to be the best organic nitrogen source for excess yield of the enzyme. The optimum C/N ratio was found to be 1:1. The α amylase exhibited activity at a wide pH and temperature range and activity were found to be optimal at pH 6 and 40 °C respectively. The molecular weight of α amylase was calculated by sodium dodecyl sulphate gel electrophoresis and found to be around 29,000 Daltons.


1996 ◽  
Vol 31 (3) ◽  
pp. 229-234 ◽  
Author(s):  
E. Dobreva ◽  
V. Ivanova ◽  
A. Tonkova ◽  
E. Radulova

2017 ◽  
Vol 7 (6) ◽  
pp. 8
Author(s):  
Saptadip Samanta ◽  
Subhajit Jana ◽  
Sanjay Kar ◽  
Pradeep Kumar Das Mohapatra ◽  
Bikash Ranjan Pati ◽  
...  

Microbial amylases have an exciting potentiality and are being used extensively in different industries. In this study, regulation of amylase biosynthesis was examined in Bacillus licheniformis SKB4 (wild type) and its mutant strain (8b). The mutant strain was developed by using UV exposure. Expression of the a-amylase gene of Bacillus licheniformis was activated by inducer and subject to catabolite repression. Addition of exogenous glucose or sucrose repressed bio-synthesis of a-amylase which was concentration (0.05-1.0% w/v) dependent. However, mutant strain could enable to overrule the glucose mediated repressive effect. Supplementation of second messenger like cyclic adenosine 3',5'-monophosphate (cAMP, 5 mM) along with glucose could a little bit improve amylase synthesis in wild strain. Antibiotics like rifampicin and tetracycline (ribonucleic acid and protein synthesis inhibitor; 100mg/ml) had stopped the release of enzyme in both wild and mutant strain. Amylase production was also inhibited in presence of respiratory inhibitor 2,4-dinitrophenol (uncoupler) at (5mM) concentration. Thus, the pattern of regulation of a-amylase production in the present strain was in multiple forms; it showed the classical glucose effect without stimulation of second messenger system. 


Sign in / Sign up

Export Citation Format

Share Document