cyclic carbonate
Recently Published Documents


TOTAL DOCUMENTS

599
(FIVE YEARS 132)

H-INDEX

62
(FIVE YEARS 10)

Author(s):  
Yunxian Qian ◽  
Yanli Chu ◽  
Zhongtian Zheng ◽  
Zulipiya Shadike ◽  
Bing Han ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Neha Sharma ◽  
Bharat Ugale ◽  
Sunil Kumar ◽  
Kamalakannan Kailasam

The capture and catalytic conversion of CO2 into value-added chemicals is a promising and sustainable approach to tackle the global warming and energy crisis. The nitrogen-rich porous organic polymers are excellent materials for CO2 capture and separation. Herein, we present a nitrogen-rich heptazine-based microporous polymer for the cycloaddition reaction of CO2 with epoxides in the absence of metals and solvents. HMP-TAPA, being rich in the nitrogen site, showed a high CO2 uptake of 106.7 mg/g with an IAST selectivity of 30.79 toward CO2 over N2. Furthermore, HMP-TAPA showed high chemical and water stability without loss of any structural integrity. Besides CO2 sorption, the catalytic activity of HMP-TAPA was checked for the cycloaddition of CO2 and terminal epoxides, resulting in cyclic carbonate with high conversion (98%). They showed remarkable recyclability up to 5 cycles without loss of activity. Overall, this study represents a rare demonstration of the rational design of POPs (HMP-TAPA) for multiple applications.


2021 ◽  
Vol 3 (4) ◽  
pp. 685-698
Author(s):  
Santosh Khokarale ◽  
Ganesh Shelke ◽  
Jyri-Pekka Mikkola

Dimethyl carbonate (DMC) and glycidol are considered industrially important chemical entities and there is a great benefit if these moieties can be synthesized from biomass-derived feedstocks such as glycerol or its derivatives. In this report, both DMC and glycidol were synthesized in an integrated process from glycerol derived 1,3-dichloro-2-propanol and CO2 through a metal-free reaction approach and at mild reaction conditions. Initially, the chlorinated cyclic carbonate, i.e., 3-chloro-1,2-propylenecarbonate was synthesized using the equivalent interaction of organic superbase 1,8-diazabicyclo [5.4.0] undec-7-ene (DBU) and 1,3-dichloro-2-propanol with CO2 at room temperature. Further, DMC and glycidol were synthesized by the base-catalyzed transesterification of 3-chloro-1,2-propylenecarbonate using DBU in methanol. The synthesis of 3-chloro-1,2-propylenecarbonate was performed in different solvents such as dimethyl sulfoxide (DMSO) and 2-methyltetrahydrofuran (2-Me-THF). In this case, 2-Me-THF further facilitated an easy separation of the product where a 97% recovery of the 3-chloro-1,2-propylenecarbonate was obtained compared to 63% with DMSO. The use of DBU as the base in the transformation of 3-chloro-1,2-propylenecarbonate further facilitates the conversion of the 3-chloro-1,2 propandiol that forms in situ during the transesterification process. Hence, in this synthetic approach, DBU not only eased the CO2 capture and served as a base catalyst in the transesterification process, but it also performed as a reservoir for chloride ions, which further facilitates the synthesis of 3-chloro-1,2-propylenecarbonate and glycidol in the overall process. The separation of the reaction components proceeded through the solvent extraction technique where a 93 and 89% recovery of the DMC and glycidol, respectively, were obtained. The DBU superbase was recovered from its chlorinated salt, [DBUH][Cl], via a neutralization technique. The progress of the reactions as well as the purity of the recovered chemical species was confirmed by means of the NMR analysis technique. Hence, a single base, as well as a renewable solvent comprising an integrated process approach was carried out under mild reaction conditions where CO2 sequestration along with industrially important chemicals such as dimethyl carbonate and glycidol were synthesized.


Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2243
Author(s):  
Anthony Morena ◽  
Vincenzo Campisciano ◽  
Adrien Comès ◽  
Leonarda Francesca Liotta ◽  
Michelangelo Gruttadauria ◽  
...  

Three different carbon nanoforms (CNFs), single-walled and multi-walled carbon nanotubes (SWCNTs, MWCNTs) and carbon nanohorns (CNHs), have been used as supports for the direct polymerization of variable amounts of a bis-vinylimidazolium salt. Transmission electron microscopy confirmed that all CNFs act as templates on the growth of the polymeric network, which perfectly covers the nanocarbons forming a cylindrical (SWCNTs, MWCNTs) or spherical (CNHs) coating. The stability of these hybrid materials was investigated in the conversion of CO2 into cyclic carbonate under high temperature and CO2 pressure. Compared with the homopolymerized monomer, nanotube-based materials display an improved catalytic activity. Beside the low catalytic loading (0.05–0.09 mol%) and the absence of Lewis acid co-catalysts, all the materials showed high TON values (up to 1154 for epichlorohydrin with SW-1:2). Interestingly, despite the loss of part of the polymeric coating for crumbling or peeling, the activity increases upon recycling of the materials, and this behaviour was ascribed to their change in morphology, which led to materials with higher surface areas and with more accessible catalytic sites. Transmission electron microscopy analysis, along with different experiments, have been carried out in order to elucidate these findings.


Polymers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2856
Author(s):  
Edyta M. Niemczyk ◽  
Alvaro Gomez-Lopez ◽  
Jean R. N. Haler ◽  
Gilles Frache ◽  
Haritz Sardon ◽  
...  

Plasma-induced free-radical polymerizations rely on the formation of radical species to initiate polymerization, leading to some extent of monomer fragmentation. In this work, the plasma-induced polymerization of an allyl ether-substituted six-membered cyclic carbonate (A6CC) is demonstrated and emphasizes the retention of the cyclic carbonate moieties. Taking advantage of the low polymerization tendency of allyl monomers, the characterization of the oligomeric species is studied to obtain insights into the effect of plasma exposure on inducing free-radical polymerization. In less than 5 min of plasma exposure, a monomer conversion close to 90% is obtained. The molecular analysis of the oligomers by gel permeation chromatography coupled with high-resolution mass spectrometry (GPC-HRMS) further confirms the high preservation of the cyclic structure and, based on the detected end groups, points to hydrogen abstraction as the main contributor to the initiation and termination of polymer chain growth. These results demonstrate that the elaboration of surfaces functionalized with cyclic carbonates could be readily elaborated by atmospheric-pressure plasmas, for instance, by copolymerization.


Sign in / Sign up

Export Citation Format

Share Document