Site-directed mutagenesis and functional analysis of active site acidic amino acid residues D142, D144 and E146 in Manduca sexta (tobacco hornworm) chitinase

2002 ◽  
Vol 32 (11) ◽  
pp. 1369-1382 ◽  
Author(s):  
Yimin Lu ◽  
Kuo-Chang Zen ◽  
Subbaratnam Muthukrishnan ◽  
Karl J Kramer
PLoS ONE ◽  
2009 ◽  
Vol 4 (4) ◽  
pp. e5348 ◽  
Author(s):  
Silvia Schumann ◽  
Mineko Terao ◽  
Enrico Garattini ◽  
Miguel Saggu ◽  
Friedhelm Lendzian ◽  
...  

2002 ◽  
Vol 367 (3) ◽  
pp. 781-789 ◽  
Author(s):  
Nobutaka FUNA ◽  
Yasuo OHNISHI ◽  
Yutaka EBIZUKA ◽  
Sueharu HORINOUCHI

RppA, which belongs to the type III polyketide synthase family, catalyses the synthesis of 1,3,6,8-tetrahydroxynaphthalene (THN), which is the key intermediate of melanin biosynthesis in the bacterium Streptomyces griseus. The reaction of THN synthesis catalysed by RppA is unique in the type III polyketide synthase family, in that it selects malonyl-CoA as a starter substrate. The Cys-His-Asn catalytic triad is also present in RppA, as in plant chalcone synthases, as revealed by analyses of active-site mutants having amino acid replacements at Cys138, His270 and Asn303 of RppA. Site-directed mutagenesis of the amino acid residues that are likely to form the active-site cavity revealed that the aromatic ring of Tyr224 is essential for RppA to select malonyl-CoA as a starter substrate, since substitution of Tyr224 by amino acids other than Phe and Trp abolished the ability of RppA to accept malonyl-CoA as a starter, whereas the mutant enzymes Y224F and Y224W were capable of synthesizing THN via the malonyl-CoA-primed reaction. Of the site-directed mutants generated, A305I was found to produce only a triketide pyrone from hexanoyl-CoA as starter substrate, although wild-type RppA synthesizes tetraketide and triketide pyrones in the hexanoyl-CoA-primed reaction. The kinetic parameters of Ala305 mutants and identification of their products showed that the substitution of Ala305 by bulky amino acid residues restricted the number of elongations of the growing polyketide chain. Both Tyr224 (important for starter substrate selection) and Ala305 (important for intermediate elongation) were found to be conserved in three other RppAs from Streptomyces antibioticus and Streptomyces lividans.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Zhi-Zhong Song ◽  
Bin Peng ◽  
Zi-Xia Gu ◽  
Mei-Ling Tang ◽  
Bei Li ◽  
...  

AbstractThe aroma of peach fruit is predominantly determined by the accumulation of γ-decalactone and ester compounds. A previous study showed that the biosynthesis of these aroma compounds in peach fruit is catalyzed by PpAAT1, an alcohol acyltransferase. In this work, we investigated the key active site residues responsible for γ-decalactone and ester biosynthesis. A total of 14 candidate amino acid residues possibly involved in internal esterification and 9 candidate amino acid residues possibly involved in esterification of PpAAT1 were assessed via site-directed mutagenesis. Analyses of the in vitro enzyme activities of PpAAT1 and its site-directed mutant proteins (PpAAT1-SMs) with different amino acid residue mutations as well as the contents of γ-decalactone in transgenic tobacco leaves and peach fruits transiently expressing PpAAT1 and PpAAT1-SMs revealed that site-directed mutation of H165 in the conserved HxxxD motif led to lost enzymatic activity of PpAAT1 in both internal esterification and its reactions, whereas mutation of the key amino acid residue D376 led to the total loss of γ-decalactone biosynthesis activity of PpAAT1. Mutations of 9 and 7 other amino acid residues also dramatically affected the enzymatic activity of PpAAT1 in the internal esterification and esterification reactions, respectively. Our findings provide a biochemical foundation for the mechanical biosynthesis of γ-decalactone and ester compounds catalyzed by PpAAT1 in peach fruits, which could be used to guide the molecular breeding of new peach species with more favorable aromas for consumers.


2000 ◽  
Vol 28 (6) ◽  
pp. 825-826 ◽  
Author(s):  
E. Hornung ◽  
S. Rosahl ◽  
H. Kühn ◽  
I. Feussner

In order to analyse the amino acid determinants which alter the positional specificity of plant lipoxygenases (LOXs), multiple LOX sequence alignments and structural modelling of the enzyme-substrate interactions were carried out. These alignments suggested three amino acid residues as the primary determinants of positional specificity. Here we show the generation of two plant LOXs with new positional specificities, a Δ-linoleneate 6-LOX and an arachidonate 11-LOX, by altering only one of these determinants within the active site of two plant LOXs. In the past, site-directed-mutagenesis studies have mainly been carried out with mammalian lipoxygenases (LOXs) [1]. In these experiments two regions have been identified in the primary structure containing sequence determinants for positional specificity. Amino acids aligning with the Sloane determinants [2] are highly conserved among plant LOXs. In contrast, there is amino acid hetero-geneity among plant LOXs at the position that aligns with P353 of the rabbit reticulocyte 15-LOX (Borngräber determinants) [3].


Sign in / Sign up

Export Citation Format

Share Document