scholarly journals Identification of the amino acid residues involved in an active site of Escherichia coli ribonuclease H by site-directed mutagenesis.

1990 ◽  
Vol 265 (8) ◽  
pp. 4615-4621
Author(s):  
S Kanaya ◽  
A Kohara ◽  
Y Miura ◽  
A Sekiguchi ◽  
S Iwai ◽  
...  
PLoS ONE ◽  
2009 ◽  
Vol 4 (4) ◽  
pp. e5348 ◽  
Author(s):  
Silvia Schumann ◽  
Mineko Terao ◽  
Enrico Garattini ◽  
Miguel Saggu ◽  
Friedhelm Lendzian ◽  
...  

2001 ◽  
Vol 276 (15) ◽  
pp. 11524-11530 ◽  
Author(s):  
Boris Illarionov ◽  
Kristina Kemter ◽  
Sabine Eberhardt ◽  
Gerald Richter ◽  
Mark Cushman ◽  
...  

Conserved amino acid residues of riboflavin synthase fromEscherichia coliwere modified by site-directed mutagenesis. Replacement or deletion of phenylalanine 2 afforded catalytically inactive proteins. S41A and H102Q mutants had substantially reduced reaction velocities. Replacements of various other conserved polar residues had little impact on catalytic activity.19F NMR protein perturbation experiments using a fluorinated intermediate analog suggest that the N-terminal sequence motif MFTG is part of one of the substrate-binding sites of the protein.


2002 ◽  
Vol 367 (3) ◽  
pp. 781-789 ◽  
Author(s):  
Nobutaka FUNA ◽  
Yasuo OHNISHI ◽  
Yutaka EBIZUKA ◽  
Sueharu HORINOUCHI

RppA, which belongs to the type III polyketide synthase family, catalyses the synthesis of 1,3,6,8-tetrahydroxynaphthalene (THN), which is the key intermediate of melanin biosynthesis in the bacterium Streptomyces griseus. The reaction of THN synthesis catalysed by RppA is unique in the type III polyketide synthase family, in that it selects malonyl-CoA as a starter substrate. The Cys-His-Asn catalytic triad is also present in RppA, as in plant chalcone synthases, as revealed by analyses of active-site mutants having amino acid replacements at Cys138, His270 and Asn303 of RppA. Site-directed mutagenesis of the amino acid residues that are likely to form the active-site cavity revealed that the aromatic ring of Tyr224 is essential for RppA to select malonyl-CoA as a starter substrate, since substitution of Tyr224 by amino acids other than Phe and Trp abolished the ability of RppA to accept malonyl-CoA as a starter, whereas the mutant enzymes Y224F and Y224W were capable of synthesizing THN via the malonyl-CoA-primed reaction. Of the site-directed mutants generated, A305I was found to produce only a triketide pyrone from hexanoyl-CoA as starter substrate, although wild-type RppA synthesizes tetraketide and triketide pyrones in the hexanoyl-CoA-primed reaction. The kinetic parameters of Ala305 mutants and identification of their products showed that the substitution of Ala305 by bulky amino acid residues restricted the number of elongations of the growing polyketide chain. Both Tyr224 (important for starter substrate selection) and Ala305 (important for intermediate elongation) were found to be conserved in three other RppAs from Streptomyces antibioticus and Streptomyces lividans.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Zhi-Zhong Song ◽  
Bin Peng ◽  
Zi-Xia Gu ◽  
Mei-Ling Tang ◽  
Bei Li ◽  
...  

AbstractThe aroma of peach fruit is predominantly determined by the accumulation of γ-decalactone and ester compounds. A previous study showed that the biosynthesis of these aroma compounds in peach fruit is catalyzed by PpAAT1, an alcohol acyltransferase. In this work, we investigated the key active site residues responsible for γ-decalactone and ester biosynthesis. A total of 14 candidate amino acid residues possibly involved in internal esterification and 9 candidate amino acid residues possibly involved in esterification of PpAAT1 were assessed via site-directed mutagenesis. Analyses of the in vitro enzyme activities of PpAAT1 and its site-directed mutant proteins (PpAAT1-SMs) with different amino acid residue mutations as well as the contents of γ-decalactone in transgenic tobacco leaves and peach fruits transiently expressing PpAAT1 and PpAAT1-SMs revealed that site-directed mutation of H165 in the conserved HxxxD motif led to lost enzymatic activity of PpAAT1 in both internal esterification and its reactions, whereas mutation of the key amino acid residue D376 led to the total loss of γ-decalactone biosynthesis activity of PpAAT1. Mutations of 9 and 7 other amino acid residues also dramatically affected the enzymatic activity of PpAAT1 in the internal esterification and esterification reactions, respectively. Our findings provide a biochemical foundation for the mechanical biosynthesis of γ-decalactone and ester compounds catalyzed by PpAAT1 in peach fruits, which could be used to guide the molecular breeding of new peach species with more favorable aromas for consumers.


2000 ◽  
Vol 28 (6) ◽  
pp. 825-826 ◽  
Author(s):  
E. Hornung ◽  
S. Rosahl ◽  
H. Kühn ◽  
I. Feussner

In order to analyse the amino acid determinants which alter the positional specificity of plant lipoxygenases (LOXs), multiple LOX sequence alignments and structural modelling of the enzyme-substrate interactions were carried out. These alignments suggested three amino acid residues as the primary determinants of positional specificity. Here we show the generation of two plant LOXs with new positional specificities, a Δ-linoleneate 6-LOX and an arachidonate 11-LOX, by altering only one of these determinants within the active site of two plant LOXs. In the past, site-directed-mutagenesis studies have mainly been carried out with mammalian lipoxygenases (LOXs) [1]. In these experiments two regions have been identified in the primary structure containing sequence determinants for positional specificity. Amino acids aligning with the Sloane determinants [2] are highly conserved among plant LOXs. In contrast, there is amino acid hetero-geneity among plant LOXs at the position that aligns with P353 of the rabbit reticulocyte 15-LOX (Borngräber determinants) [3].


2004 ◽  
Vol 70 (7) ◽  
pp. 4318-4325 ◽  
Author(s):  
Joo-Heon Park ◽  
Carl A. Batt

ABSTRACT The genes (xylA) encoding xylose isomerase (XI) from two Lactococcus lactis subsp. lactis strains, 210 (Xyl−) and IO-1 (Xyl+), were cloned, and the activities of their expressed proteins in recombinant strains of Escherichia coli were investigated. The nucleotide and amino acid sequence homologies between the xylA genes were 98.4 and 98.6%, respectively, and only six amino acid residues differed between the two XIs. The purified IO-1 XI was soluble with K m and k cat being 2.25 mM and 184/s, respectively, while the 210 XI was insoluble and inactive. Site-directed mutagenesis on 210 xylA showed that a triple mutant possessing R202M/Y218D/V275A mutations regained XI activity and was soluble. The K m and k cat of this mutant were 4.15 mM and 141/s, respectively. One of the IO-1 XI mutants, S388T, was insoluble and showed negligible activity similar to that of 210 XI. The introduction of a K407E mutation to the IO-1 S388T XI mutant restored its activity and solubility. The dissolution of XI activity in L. lactis subsp. lactis involves a series of mutations that collectively eliminate enzyme activity by reducing the solubility of the enzyme.


Sign in / Sign up

Export Citation Format

Share Document