8.2 Cerebral blood flow in the process of adaptation ofstanding posture control to floor oscillation measured by near-infrared spectroscopy

2005 ◽  
Vol 21 ◽  
pp. S49
Author(s):  
K. Fujiwara ◽  
K. Maeda
2006 ◽  
Vol 100 (3) ◽  
pp. 850-857 ◽  
Author(s):  
Kenneth M. Tichauer ◽  
Derek W. Brown ◽  
Jennifer Hadway ◽  
Ting-Yim Lee ◽  
Keith St. Lawrence

Impaired oxidative metabolism following hypoxia-ischemia (HI) is believed to be an early indicator of delayed brain injury. The cerebral metabolic rate of oxygen (CMRO2) can be measured by combining near-infrared spectroscopy (NIRS) measurements of cerebral blood flow (CBF) and cerebral deoxy-hemoglobin concentration. The ability of NIRS to measure changes in CMRO2 following HI was investigated in newborn piglets. Nine piglets were subjected to 30 min of HI by occluding both carotid arteries and reducing the fraction of inspired oxygen to 8%. An additional nine piglets served as sham-operated controls. Measurements of CBF, oxygen extraction fraction (OEF), and CMRO2 were obtained at baseline and at 6 h after the HI insult. Of the three parameters, only CMRO2 showed a persistent and significant change after HI. Five minutes after reoxygenation, there was a 28 ± 12% (mean ± SE) decrease in CMRO2, a 72 ± 50% increase in CBF, and a 56 ± 19% decrease in OEF compared with baseline ( P < 0.05). By 30 min postinsult and for the remainder of the study, there were no significant differences in CBF and OEF between control and insult groups, whereas CMRO2 remained depressed throughout the 6-h postinsult period. This study demonstrates that NIRS can measure decreases in CMRO2 caused by HI. The results highlight the potential for NIRS to be used in the neonatal intensive care unit to detect delayed brain damage.


2001 ◽  
Vol 21 (2) ◽  
pp. 110-113 ◽  
Author(s):  
Marjo J. T. Van de Ven ◽  
Willy N. J. M. Colier ◽  
Marco C. van der Sluijs ◽  
Diederik Walraven ◽  
Berend Oeseburg ◽  
...  

In some circumstances, cerebral blood volume (CBV) can be used as a measure for cerebral blood flow. A new near infrared spectroscope was used for determining the reproducibility of CBV measurements assessed by the O2-method. Twenty-seven healthy subjects were investigated. An intrasubject coefficient of variation (CV) was calculated, based on four identical episodes of desaturation–resaturation (O2-method) procedures for CBV measurements. Two trials were performed, with (trial 1) and without (trial 2) disconnecting the equipment. A mean CV of 12.6% and 10.0% was found in trial 1 and 2, respectively. Cerebral blood volume values yield 3.60 ± 0.82 mL 100 g−1. Cerebral blood volume could be measured reproducible in adults using near infrared spectroscopy, if the arterial desaturation is limited to approximately 5% from baseline level.


2016 ◽  
Vol 37 (3) ◽  
pp. 902-913 ◽  
Author(s):  
Thomas Alderliesten ◽  
Jill B De Vis ◽  
Petra MA Lemmers ◽  
Jeroen Hendrikse ◽  
Floris Groenendaal ◽  
...  

Although near-infrared spectroscopy is increasingly being used to monitor cerebral oxygenation in neonates, it has a limited penetration depth. The T2-prepared Blood Imaging of Oxygen Saturation (T2-BIOS) magnetic resonance sequence provides an oxygen saturation estimate on a voxel-by-voxel basis, without needing a respiratory calibration experiment. In 15 neonates, oxygen saturation measured by T2-prepared blood imaging of oxygen saturation and near-infrared spectroscopy were compared. In addition, these measures were compared to cerebral blood flow and venous oxygen saturation in the sagittal sinus. A strong linear relation was found between the oxygen saturation measured by magnetic resonance imaging and the oxygen saturation measured by near-infrared spectroscopy ( R2 = 0.64, p < 0.001). Strong linear correlations were found between near-infrared spectroscopy oxygen saturation, and magnetic resonance imaging measures of frontal cerebral blood flow, whole brain cerebral blood flow and venous oxygen saturation in the sagittal sinus ( R2 = 0.71, 0.50, 0.65; p < 0.01). The oxygen saturation obtained by T2-prepared blood imaging of oxygen saturation correlated with venous oxygen saturation in the sagittal sinus ( R2 = 0.49, p = 0.023), but no significant correlations could be demonstrated with frontal and whole brain cerebral blood flow. These results suggest that measuring oxygen saturation by T2-prepared blood imaging of oxygen saturation is feasible, even in neonates. Strong correlations between the various methods work as a cross validation for near-infrared spectroscopy and T2-prepared blood imaging of oxygen saturation, confirming the validity of using of these techniques for determining cerebral oxygenation.


Sign in / Sign up

Export Citation Format

Share Document