hypoxia ischemia
Recently Published Documents


TOTAL DOCUMENTS

1429
(FIVE YEARS 192)

H-INDEX

93
(FIVE YEARS 7)

2022 ◽  
Author(s):  
xiaoqin fu ◽  
tianlei zhang ◽  
wei lin ◽  
mengdie jiao ◽  
zhiwei zhang ◽  
...  

Objective: Rice-Vannucci model has been widely used as HIE(Hypoxic ischemic encephalopathy ) animal model in the past forty years, but it does not mimic reperfusion injury that occurs during HIE. The aim of the present study was to establish a new neonatal rat model by simulating hypoxia ischemia reperfusion brain damage (HIRBD) through "common carotid artery (CCA) muscle bridge". Methods: Sixty 7-day-old male Sprague-Dawley rats were randomly assigned to group A (HIRBD groups, n=36), group B (Rice-Vannucci group, n=12), and group C (sham-operated group, n=12). Rats in group A were assigned to 3 subgroups (A1-A3, 12 animals/subgroup). Dynamic changes in cerebral blood flow (CBF) were evaluated by the laser speckle imaging system. The status of the CCA was observed under a stereomicroscope. Changes in body weight, gross morphology as well as pathological sections of brain tissue were examined to evaluate the feasibility of the model. Results: The results indicated that CCA muscle bridge successfully blocked the CBF. CBF was restored after removal of the CCA muscle bridge in HIRBD groups. The CCA was in good condition after removing the muscle bridge, and blood supply was not affected. Changes in body weight, gross morphology and pathological sections of brain tissue indicated that ischemia reperfusion induced by the CCA muscle bridge method caused varying degrees of brain damage. Conclusion: CCA muscle bridge method is effective for establishing a reliable, stable, and reproducible neonatal rat model for study of HIRBD.


2022 ◽  
Author(s):  
Sheryl E Arambula ◽  
Miguel Perez-Pouchoulen ◽  
Jaylyn Waddell ◽  
Andressa Rejani Ribeiro Leite ◽  
Emily L Graham ◽  
...  

Abstract Perinatal hypoxia-ischemia (HI) is a major health issue with no effective therapies beyond head cooling. Notably, male infants are at a greater risk for HI and exhibit more extreme deficits than females. Extensive clinical evidence indicates that perinatal HI impacts the developing cerebellum, yet this region has been largely ignored in preclinical models. Using a modified version of the Rice-Vannucci rat model for HI injury at postnatal day 10, we find reductions in dendritic complexity of Purkinje neurons in males one week later. Females exhibited modest but opposite effects, with slight increases in dendritic complexity, based on Sholl analysis. A custom-made NanoString panel for quantifying mRNAs associated with development, inflammation, and sex differences found almost no commonality in the response to HI in males versus females, with males up-regulating genes associated with microglia activity whereas females increased expression of a protective complement protein, but also of enzymes associated with endocannabinoids and prostaglandins. Both sexes exhibited a reduction in the GABA-synthetic enzymes, GAD-65 and GAD-67, after HI, suggesting increased excitotoxicity, but why males suffered more damage to the Purkinje neurons is unknown.


Author(s):  
Hector Lafuente ◽  
Ion Olaetxea ◽  
Ana Valero ◽  
Francisco Jose Alvarez ◽  
Ander Izeta ◽  
...  
Keyword(s):  

Stroke ◽  
2021 ◽  
Author(s):  
Peter Kang ◽  
Chunwei Ying ◽  
Yasheng Chen ◽  
Andria L. Ford ◽  
Hongyu An ◽  
...  

Background and Purpose: Chronic hypoxia-ischemia is a putative mechanism underlying the development of white matter hyperintensities (WMH) and microstructural disruption in cerebral small vessel disease. WMH fall primarily within deep white matter (WM) watershed regions. We hypothesized that elevated oxygen extraction fraction (OEF), a signature of hypoxia-ischemia, would be detected in the watershed where WMH density is highest. We further hypothesized that OEF would be elevated in regions immediately surrounding WMH, at the leading edge of growth. Methods: In this cross-sectional study conducted from 2016 to 2019 at an academic medical center in St Louis, MO, participants (age >50) with a range of cerebrovascular risk factors underwent brain magnetic resonance imaging using pseudocontinuous arterial spin labeling, asymmetric spin echo, fluid-attenuated inversion recovery and diffusion tensor imaging to measure cerebral blood flow (CBF), OEF, WMH, and WM integrity, respectively. We defined the physiologic watershed as a region where CBF was below the 10th percentile of mean WM CBF in a young healthy cohort. We conducted linear regression to evaluate the relationship between CBF and OEF with structural and microstructural WM injury defined by fluid-attenuated inversion recovery WMH and diffusion tensor imaging, respectively. We conducted ANOVA to determine if OEF was increased in proximity to WMH lesions. Results: In a cohort of 42 participants (age 50–80), the physiologic watershed region spatially overlapped with regions of highest WMH lesion density. As CBF decreased and OEF increased, WMH density increased. Elevated watershed OEF was associated with greater WMH burden and microstructural disruption, after adjusting for vascular risk factors. In contrast, WM and watershed CBF were not associated with WMH burden or microstructural disruption. Moreover, OEF progressively increased while CBF decreased, in concentric contours approaching WMH lesions. Conclusions: Chronic hypoxia-ischemia in the watershed region may contribute to cerebral small vessel disease pathogenesis and development of WMH. Watershed OEF may hold promise as an imaging biomarker to identify individuals at risk for cerebral small vessel disease progression.


Cureus ◽  
2021 ◽  
Author(s):  
David Chachkhiani ◽  
Anil K Chimakurthy ◽  
Olinda Verdecie ◽  
Cheryl T Goyne ◽  
Edward C Mader

Author(s):  
Qing Song ◽  
Qingying Gao ◽  
Taotao Chen ◽  
Ting Wen ◽  
Peng Wu ◽  
...  

Abstract Hypoxia–ischemia (HI) during crucial periods of brain formation can lead to changes in brain morphology, propagation of neuronal stimuli, and permanent neurodevelopmental impairment, which can have profound effects on cognitive function later in life. FAM3A, a subgroup of family with sequence similarity 3 (FAM3) gene family, is ubiquitously expressed in almost all cells. Overexpression of FAM3A has been evidenced to reduce hyperglycemia via the PI3K/Akt signaling pathway and protect mitochondrial function in neuronal HT22 cells. This study aims to evaluate the protective role of FAM3A in HI-induced brain impairment. Experimentally, maternal rats underwent uterine artery bilateral ligation to induce neonatal HI on day 14 of gestation. At 6 weeks of age, cognitive development assessments including NSS, wire grip, and water maze were carried out. The animals were then sacrificed to assess cerebral mitochondrial function as well as levels of FAM3A, TNF-α and IFN-γ. Results suggest that HI significantly reduced FAM3A expression in rat brain tissues, and that overexpression of FAM3A through lentiviral transduction effectively improved cognitive and motor functions in HI rats as reflected by improved NSS evaluation, cerebral water content, limb strength, as well as spatial learning and memory. At the molecular level, overexpression of FAM3A was able to promote ATP production, balance mitochondrial membrane potential, and reduce levels of pro-inflammatory cytokines TNF-α and IFN-γ. We conclude that FAM3A overexpression may have a protective effect on neuron morphology, cerebral mitochondrial as well as cognitive function. Graphical Abstract


2021 ◽  
Author(s):  
Naidi Sun ◽  
Yu-Yo Sun ◽  
Rui Cao ◽  
Hong-Ru Chen ◽  
Yiming Wang ◽  
...  

Hypothermia is the best available therapy for neonatal hypoxia ischemia (HI) brain injury, but its primary mechanisms remain uncertain. We hypothesize that HI induces, whereas hypothermia represses, uncoupling of oxidative phosphorylation (OXPHOS), an increase of the cerebral metabolic rate of oxygen (CMRO2) despite reduction of the mitochondrial energy output. We used a multiparametric photoacoustic microscopy (PAM) system to compare the effects of HI and post HI hypothermic treatment on CMRO2 in awake 10 day old (P10) mice. Here we show that hypoxia (10% O2) elevated CMRO2, but the addition of unilateral carotid artery ligation suppressed CMRO2 and sparked a rapid overshoot of post HI CMRO2 in the ipsilateral cerebral cortex for at least 2 hours. The post HI surge of CMRO2 was linked to an increase of mitochondrial oxygen consumption and superoxide outburst, despite reduction of the mitochondrial membrane potential. Notably, post HI hypothermia blocked the surge of superoxide and CMRO2, primarily by limiting oxygen extraction fraction (OEF), leading to better preservation of adenosine triphosphate (ATP), creatine (Cr) and N acetylaspartate (NAA) after HI. Mice that did not receive hypothermia exhibited ~80% reduction of CMRO2 at 24 h post HI, coupled to a large cortical infarction. These results suggest that mitigation of post HI uncoupling of OXPHOS is an early and/or pivotal effect of hypothermia. Further, optical measurement of CMRO2 may be a sensitive and noninvasive method to monitor brain damage in hypoxic ischemic encephalopathy (HIE).


2021 ◽  
Vol 15 ◽  
Author(s):  
Gagandeep Singh-Mallah ◽  
Takuya Kawamura ◽  
Maryam Ardalan ◽  
Tetyana Chumak ◽  
Pernilla Svedin ◽  
...  

Inflammation and neonatal hypoxia-ischemia (HI) are important etiological factors of perinatal brain injury. However, underlying mechanisms remain unclear. Sirtuins are a family of nicotinamide adenine dinucleotide (NAD)+-dependent histone deacetylases. Sirtuin-6 is thought to regulate inflammatory and oxidative pathways, such as the extracellular release of the alarmin high mobility group box-1 (HMGB1). The expression and role of sirtuin-6 in neonatal brain injury are unknown. In a well-established model of neonatal brain injury, which encompasses inflammation (lipopolysaccharide, LPS) and hypoxia-ischemia (LPS+HI), we investigated the protein expression of sirtuin-6 and HMGB1, as well as thiol oxidation. Furthermore, we assessed the effect of the antioxidant N-acetyl cysteine (NAC) on sirtuin-6 expression, nuclear to cytoplasmic translocation, and release of HMGB1 in the brain and blood thiol oxidation after LPS+HI. We demonstrate reduced expression of sirtuin-6 and increased release of HMGB1 in injured hippocampus after LPS+HI. NAC treatment restored sirtuin-6 protein levels, which was associated with reduced extracellular HMGB1 release and reduced thiol oxidation in the blood. The study suggests that early reduction in sirtuin-6 is associated with HMGB1 release, which may contribute to neonatal brain injury, and that antioxidant treatment is beneficial for the alleviation of these injurious mechanisms.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Armin Yazdani ◽  
Belal Howidi ◽  
Meng Zhu Shi ◽  
Nicol Tugarinov ◽  
Zehra Khoja ◽  
...  

AbstractThe hippocampus is a fundamental structure of the brain that plays an important role in neurodevelopment and is very sensitive to hypoxia–ischemia (HI). The purpose of this study was to investigate the effects of sildenafil on neonatal hippocampal brain injuries resulting from HI, and on neuronal development in this context. HI was induced in male Long–Evans rat pups at postnatal day 10 (P10) by a left common carotid ligation followed by a 2-h exposure to 8% oxygen. Rat pups were randomized to vehicle or sildenafil given orally twice daily for 7 days starting 12 h after HI. Hematoxylin and eosin staining was performed at P30 to measure the surface of the hippocampus; immunohistochemistry was performed to stain neurons, oligodendrocytes, and glial cells in the hippocampus. Western blots of the hippocampus were performed at P12, P17, and P30 to study the expression of neuronal markers and mTOR pathway. HI caused significant hippocampal atrophy and a significant reduction of the number of mature neurons, and induced reactive astrocytosis and microgliosis in the hippocampus. HI increased apoptosis and caused significant dysregulation of the normal neuronal development program. Treatment with sildenafil preserved the gross morphology of the hippocampus, reverted the number of mature neurons to levels comparable to sham rats, significantly increased both the immature and mature oligodendrocytes, and significantly reduced the number of microglia and astrocytes. Sildenafil also decreased apoptosis and reestablished the normal progression of post-natal neuronal development. The PI3K/Akt/mTOR pathway, whose activity was decreased after HI in the hippocampus, and restored after sildenafil treatment, may be involved. Sildenafil may have both neuroprotective and neurorestorative properties in the neonatal hippocampus following HI.


Sign in / Sign up

Export Citation Format

Share Document