Ionotropic glutamate receptors: still a target for neuroprotection in brain ischemia? insights from in vitro studies

2003 ◽  
Vol 12 (1) ◽  
pp. 82-88 ◽  
Author(s):  
Paolo Calabresi ◽  
Diego Centonze ◽  
Letizia M Cupini ◽  
Cinzia Costa ◽  
Francesco Pisani ◽  
...  
Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 77
Author(s):  
Fabrizio Gardoni ◽  
Jennifer Stanic ◽  
Diego Scheggia ◽  
Alberto Benussi ◽  
Barbara Borroni ◽  
...  

The role of autoimmunity in central nervous system (CNS) disorders is rapidly expanding. In the last twenty years, different types of autoantibodies targeting subunits of ionotropic glutamate receptors have been found in a variety of patients affected by brain disorders. Several of these antibodies are directed against NMDA receptors (NMDAR), mostly in autoimmune encephalitis, whereas a growing field of research has identified antibodies against AMPA receptor (AMPAR) subunits in patients with different types of epilepsy or frontotemporal dementia. Several in vitro and in vivo studies performed in the last decade have dramatically improved our understanding of the molecular and functional effects induced by both NMDAR and AMPAR autoantibodies at the excitatory glutamatergic synapse and, consequently, their possible role in the onset of clinical symptoms. In particular, the method by which autoantibodies can modulate the localization at synapses of specific target subunits leading to functional impairments and behavioral alterations has been well addressed in animal studies. Overall, these preclinical studies have opened new avenues for the development of novel pharmacological treatments specifically targeting the synaptic activation of ionotropic glutamate receptors.


2014 ◽  
Vol 19 (8) ◽  
pp. 1174-1184 ◽  
Author(s):  
Kazuyuki Fukushima ◽  
Yoshikuni Tabata ◽  
Yoichi Imaizumi ◽  
Naohiro Kohmura ◽  
Michiko Sugawara ◽  
...  

The hippocampus is an important brain region that is involved in neurological disorders such as Alzheimer disease, schizophrenia, and epilepsy. Ionotropic glutamate receptors—namely, N-methyl-D-aspartate (NMDA) receptors (NMDARs), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors (AMPARs), and kainic acid (KA) receptors (KARs)—are well known to be involved in these diseases by mediating long-term potentiation, excitotoxicity, or both. To predict the therapeutic efficacy and neuronal toxicity of drug candidates acting on these receptors, physiologically relevant systems for assaying brain region–specific human neural cells are necessary. Here, we characterized the functional differentiation of human fetal hippocampus–derived neural stem/progenitor cells—namely, HIP-009 cells. Calcium rise assay demonstrated that, after a 4-week differentiation, the cells responded to NMDA (EC50 = 7.5 ± 0.4 µM; n = 4), AMPA (EC50 = 2.5 ± 0.1 µM; n = 3), or KA (EC50 = 33.5 ± 1.1 µM; n = 3) in a concentration-dependent manner. An AMPA-evoked calcium rise was observed in the absence of the desensitization inhibitor cyclothiazide. In addition, the calcium rise induced by these agonists was inhibited by antagonists for each receptor—namely, MK-801 for NMDA stimulation (IC50 = 0.6 ± 0.1 µM; n = 4) and NBQX for AMPA and KA stimulation (IC50 = 0.7 ± 0.1 and 0.7 ± 0.03 µM, respectively; n = 3). The gene expression profile of differentiated HIP-009 cells was distinct from that of undifferentiated cells and closely resembled that of the human adult hippocampus. Our results show that HIP-009 cells are a unique tool for obtaining human hippocampal neural cells and are applicable to systems for assay of ionotropic glutamate receptors as a physiologically relevant in vitro model.


2001 ◽  
Vol 21 (3) ◽  
pp. 226-232 ◽  
Author(s):  
Kazuhide Furuya ◽  
Irene Ginis ◽  
Hidetaka Takeda ◽  
Yong Chen ◽  
John M. Hallenbeck

Previous work in primary cell culture has shown that TNF-α and ceramide are involved in the signaling that induces tolerance to brain ischemia ( Ginis et al., 1999 ; Liu et al., 2000 ). To validate the in vitro studies, the authors administered cell permeable analogs of ceramides intracisternally or intravenously to examine their effect on neuroprotection after focal cerebral ischemia. Permanent middle cerebral artery occlusion (MCAO) was performed in spontaneously hypertensive rats. Infarct volumes were assessed at 24 hours after surgery. D- erythro-N-acetylsphingosine (C2-ceramide) or its vehicle was infused intracisternally for 1 hour before MCAO. In a second set of studies, D- erythro-N-octanoylsphingosine (C8-ceramide) or its vehicle was injected intravenously 48 or 24 hours before MCAO to mimic preconditioning (PC) and was also injected 5 minutes after MCAO. C2-ceramide infusion significantly reduced infarct volumes by approximately 14% ( P < 0.05). C8-ceramide injection reduced infarct volumes approximately 17% compared with controls. This effect was constant and significant compared with controls over the time periods examined ( P < 0.01). This work supports findings in primary brain cell cultures that implicate ceramide as a downstream signal that is proximate to development of tolerance to brain ischemia. Because the degree of protection represents approximately 50% of the maximal infarct reduction observed in this model, there are probably additional signaling pathways that subserve tolerance.


2006 ◽  
Vol 15 (04) ◽  
pp. 245-257 ◽  
Author(s):  
H. J. Rolf ◽  
K. G. Wiese ◽  
H. Siggelkow ◽  
H. Schliephake ◽  
G. A. Bubernik

Sign in / Sign up

Export Citation Format

Share Document