scholarly journals Mechanical Properties and Transformation Behavior of NiTiNb Shape Memory Alloys

2009 ◽  
Vol 22 (5) ◽  
pp. 540-543 ◽  
Author(s):  
Liu Wei ◽  
Zhao Xinqing
Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1683 ◽  
Author(s):  
Xiebin Wang ◽  
Sergey Kustov ◽  
Jan Van Humbeeck

Due to unique functional and mechanical properties, NiTi shape memory alloys are one of the most promising metallic functional materials. However, the poor workability limits the extensive utilization of NiTi alloys as components of complex shapes. The emerging additive manufacturing techniques provide high degrees of freedom to fabricate complex structures. A freeform fabrication of complex structures by additive manufacturing combined with the unique functional properties (e.g., shape memory effect and superelasticity) provide great potential for material and structure design, and thus should lead to numerous applications. In this review, the unique microstructure that is generated by selective laser melting (SLM) is discussed first. Afterwards, the previously reported transformation behavior and mechanical properties of NiTi alloys produced under various SLM conditions are summarized.


2006 ◽  
Vol 8 (4) ◽  
pp. 247-252 ◽  
Author(s):  
J. Mentz ◽  
M. Bram ◽  
H. P. Buchkremer ◽  
D. Stöver

Crystals ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 345 ◽  
Author(s):  
Weiya Li ◽  
Chunwang Zhao

The microstructure and martensitic transformation behavior of Ni50−xTi50Lax (x = 0.1, 0.3, 0.5, 0.7) shape memory alloys were investigated experimentally. Results show that the microstructure of Ni50−xTi50Lax alloys consists of a near-equiatomic TiNi matrix, LaNi precipitates, and Ti2Ni precipitates. With increasing La content, the amounts of LaNi and Ti2Ni precipitates demonstrate an increasing tendency. The martensitic transformation start temperature increases gradually with increasing La content. The Ni content is mainly responsible for the change in martensite transformation behavior in Ni50−xTi50Lax alloys.


1999 ◽  
Author(s):  
Steven J. Murray ◽  
Ryoji Hayashi ◽  
Miguel A. Marioni ◽  
Samuel M. Allen ◽  
Robert C. O'Handley

2018 ◽  
Vol 747 ◽  
pp. 348-353 ◽  
Author(s):  
Jun Li ◽  
Xiaoyang Yi ◽  
Kuishan Sun ◽  
Bin Sun ◽  
Weihong Gao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document