ni content
Recently Published Documents


TOTAL DOCUMENTS

477
(FIVE YEARS 150)

H-INDEX

28
(FIVE YEARS 5)

Fuel ◽  
2022 ◽  
Vol 312 ◽  
pp. 122823
Author(s):  
Quan Luu Manh Ha ◽  
Hanan Atia ◽  
Carsten Kreyenschulte ◽  
Henrik Lund ◽  
Stephan Bartling ◽  
...  

2022 ◽  
Author(s):  
A. Churakova

Abstract. In this work was investigate the corrosion behavior of the TiNi alloy in a coarse-grained state in inorganic field with different concentration and holding time. An increase in the concentration of the solution leads to a significant acceleration of corrosion processes in the Ti49.1Ni50.9 alloy with a high Ni content, including until the samples are completely dissolved. It was revealed that solutions of 1 M sulfuric and hydrochloric acids after a month's exposure did not change in color and no precipitations were found, while solutions of 5 M hydrochloric and sulfuric acids acquired a violet and then green color, which is due to the predominant release of titanium ions (+4) and nickel (+2).


2022 ◽  
Vol 8 ◽  
Author(s):  
Z. Li ◽  
K. F. Yao ◽  
T. C. Liu ◽  
X. Li ◽  
S. Wang

A series of nanocrystalline soft magnetic alloys with nominal compositions of Fe66.8-xCo10NixCu0.8Nb2.9Si11.5B8 (x = 1–15 at%) were developed and studied. Effects of annealing on the soft magnetic properties, crystallization behavior, and domain structure were investigated. The alloys with higher Ni content were prone to exhibit stronger magnetic anisotropy. The Fe66.8Co10Ni10Cu0.8Nb2.9Si11.5B8 alloy exhibited excellent soft magnetic properties, including the low permeability of 2000, low coercivity of about 0.6 A/m, and low remanence of 2.4 mT, together with a temperature gap of 128 K between two crystallization onset temperatures. It has been found that the Ni content and the annealing process possess significant effects on the soft magnetic property of the nanocrystalline alloys. It shows that the developed Fe66.8Co10Ni10Cu0.8Nb2.9Si11.5B8 nanocrystalline alloy exhibits great potentials for applying in the field of common mode chokes or current transformers, due to its ability to resist the direct current.


2021 ◽  
Vol 32 (6) ◽  
pp. 464-469
Author(s):  
JINHYEOK WOO ◽  
TAEYOUNG KIM ◽  
JU-EON KIM ◽  
BYUNGOK CHO ◽  
SUKYONG JUNG ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 118
Author(s):  
Jingyuan Bai ◽  
Jin Zhang ◽  
Konrad Eiler ◽  
Zhou Yang ◽  
Longyi Fan ◽  
...  

Ni-based bimetallic films with 20 at.% and 45 at.% Cu and mesostructured surfaces were prepared by electrodeposition from an aqueous solution containing micelles of P123 triblock copolymer serving as a structure-directing agent. The pH value of the electrolytic solution had a key effect on both the resulting Cu/Ni ratio and the surface topology. The catalytic activity of the CuNi films toward hydrogen evolution reaction was investigated by cyclic voltammetry (CV) in 1 M KOH electrolyte at room temperature. The Cu45Ni55 film showed the highest activity (even higher than that of a non-mesostructured pure Ni film), which was attributed to the Ni content at the utmost surface, as demonstrated by CV studies, as well as the presence of a highly corrugated surface.


2021 ◽  
Author(s):  
Wesley M. Dose ◽  
Israel Temprano ◽  
Jennifer P. Allen ◽  
Erik Björklund ◽  
Christopher A. O’Keefe ◽  
...  

The chemical and electrochemical reactions at the positive electrode-electrolyte interface in Li-ion batteries are hugely influential on cycle life and safety. Ni-rich layered transition metal oxides exhibit higher interfacial reactivity than their lower Ni-content analogues, reacting via poorly understood mechanisms. Here, we study the role of the electrolyte solvent, specifically cyclic ethylene carbonate (EC) and linear ethyl methyl carbonate (EMC), in determining the interfacial reactivity at LiNi0.33Mn0.33Co0.33O2 (NMC111) and LiNi0.8Mn0.1Co0.1O2 (NMC811). Parasitic currents are measured during high voltage holds in NMC/Li4Ti5O12 (LTO) cells, LTO avoiding parasitic currents related to anode-cathode reduction species cross-over, and are found to be higher for EC-containing vs. EC-free electrolytes with NMC811. No difference between electrolytes are observed with NMC111. On-line gas analysis reveals this to be related to lattice oxygen release, and accompanying electrolyte decomposition, which increases substantially with greater Ni content, and for EC-containing electrolytes with NMC811. This is corroborated by electrochemical impedance spectroscopy (EIS) and transmission electron microscopy (TEM) of NMC811 after the voltage hold, which show a higher interfacial impedance and a thicker oxygen-deficient rock-salt surface reconstruction layer, respectively. Combined findings from solution NMR, ICP (of electrolytes) and XPS analysis (of electrodes) reveal that higher lattice oxygen release from NMC811 in EC-containing electrolytes is coupled with more electrolyte breakdown and higher amounts of transition metal dissolution compared to EC-free electrolyte. Finally, new mechanistic insights for the chemical oxidation pathways of electrolyte solvents and, critically, the knock-on chemical and electrochemical reactions that further degrade the electrolyte and electrodes curtailing battery lifetime are provided.


2021 ◽  
Vol 13 (24) ◽  
pp. 13789
Author(s):  
Hazrul Adzfar Shabri ◽  
Siti Norlaila Faeizah Mohd Rudin ◽  
Shahirah Deraman ◽  
Mazlinda Ab Rahman ◽  
Mohd Hafiz Dzarfan Othman ◽  
...  

The study examines the effect of using low nickel (Ni) with high ceria (CeO2) anode content towards the oxidation of H2 and CH4 fuel by evaluating the activation energy of the ohmic process and charge transfer process. Using a micro-tubular solid oxide fuel cell (MT-SOFC), the anodes are made up of 50% YSZ with varying NiO:CeO2 percentages from 0% NiO, 50% CeO2 to 50% NiO, 0% CeO2. The performance is measured based on maximum power density (MPD), electrochemical impedance spectroscopy (EIS) and activation energy, Ea of the ohmic (Rohm) and charge transfer (Rct) processes. We found that by lowering the Ni content to lower than 50% NiO, anode conductivity will drop by 7-fold. An anode containing 37.5% NiO, 12.5% CeO2 yield MPD of 41.1 and 2.9 mW cm−2 when tested on H2 and CH4 fuels thus have the lowest Ni content without an abrupt negative effect on the MPD and EIS. The significant effect of conductivity drops on MPD and EIS are observed to occur at 25% NiO, 25% CeO2 and lower NiO content. However, anode content of 25% NiO, 25% CeO2 has the lowest Ea for Rct (29.74 kJ mol−1) for operation in CH4, making it the best anode composition to oxidize CH4. As a conclusion, an anode containing 25% NiO:25% CeO2:50% YSZ and 37.5% NiO:12.5% CeO2:50% YSZ shows promising results in becoming the low Ni anode for coking-tolerant SOFC.


Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1971
Author(s):  
Jiamei Wang ◽  
Xinjie Di ◽  
Chengning Li ◽  
Dongpo Wang

The multi-pass deposited metals were prepared by metal-cored wire with low (2.5 wt%) and high (4.0 wt%) Ni to research the effect of Ni on the bainite/martensite transformation. Results showed that deposited metals exhibited a multiphase structure comprised of bainite, martensite and residual austenite, which is not only explained from SEM/TEM, but also identified and quantified each phase from crystallographic structure through XRD and EBSD. With Ni content increasing, the fraction of martensite increases from 37% to 41%, and that of bainite decreases from 61% to 55% accordingly because 4% Ni element narrows the temperature range of the bainite transformation ~20 °C. The 7.8% residual austenite exhibited block and sheet in the deposited metal with low Ni, while the fraction of residual austenite was 3.26% as a film with high Ni, caused by different transformation mechanisms of bainite and martensite. The tensile strengths of deposited metals were 1042 ± 10 MPa (2.5% Ni) and 1040 ± 5 MPa (4% Ni), respectively. The yield strength of deposited metals with high Ni was 685 ± 18 MPa, which was higher than low Ni due to the high fraction of martensite. The impact values of deposited metals with high Ni content decreased because the volume fraction of bainite and residual austenite and area fraction of large-angle grain boundary were lower.


2021 ◽  
Vol 12 ◽  
Author(s):  
Alexandra Šimonovičová ◽  
Alžbeta Takáčová ◽  
Ivan Šimkovic ◽  
Sanja Nosalj

Despite the negative impact on the environment, incineration is one of the most commonly used methods for dealing with waste. Besides emissions, the production of ash, which usually shows several negative properties, such as a higher content of hazardous elements or strongly alkaline pH, is problematic from an environmental viewpoint as well. The subject of our paper was the assessment of biosorption of Ni from ash material by a microbial consortium of Chlorella sp. and Aspergillus niger. The solid substrate represented a fraction of particles of size <0.63 mm with a Ni content of 417 mg kg–1. We used a biomass consisting of two different organisms as the sorbent: a non-living algae culture of Chlorella sp. (an autotrophic organism) and the microscopic filamentous fungus A. niger (a heterotrophic organism) in the form of pellets. The experiments were conducted under static conditions as well as with the use of shaker (170 rpm) with different modifications: solid substrate, Chlorella sp. and pellets of A. niger; solid substrate and pellets of A. niger. The humidity-temperature conditions were also changed. Sorption took place under dry and also wet conditions (with distilled water in a volume of 30–50 ml), partially under laboratory conditions at a temperature of 25°C as well as in the exterior. The determination of the Ni content was done using inductively coupled plasma optical emission spectrometry (ICP-OES). The removal of Ni ranged from 13.61% efficiency (Chlorella sp., A. niger with the addition of 30 ml of distilled water, outdoors under static conditions after 48 h of the experiment) to 46.28% (Chlorella sp., A. niger with the addition of 30 ml of distilled water, on a shaker under laboratory conditions after 48 h of the experiment). For the purpose of analyzing the representation of functional groups in the microbial biomass and studying their interaction with the ash material, we used Fourier-transform infrared (FTIR) spectroscopy. We observed that the amount of Ni adsorbed positively correlates with absorbance in the spectral bands where we detect the vibrations of several organic functional groups. These groups include hydroxyl, aliphatic, carbonyl, carboxyl and amide structural units. The observed correlations indicate that, aside from polar and negatively charged groups, aliphatic or aromatic structures may also be involved in sorption processes due to electrostatic attraction. The correlation between absorbance and the Ni content reached a maximum in amide II band (r = 0.9; P < 0.001), where vibrations of the C=O, C–N, and N–H groups are detected. The presented results suggest that the simultaneous use of both microorganisms in biosorption represents an effective method for reducing Ni content in a solid substrate, which may be useful as a partial process for waste disposal.


Sign in / Sign up

Export Citation Format

Share Document